NOTICES Notices

Note

|

| Before using this document, read the general information under
| n i ;

|

|

E

Library of Congress Catalog Number: 92-85439
ISBN: 1-56529-170-0
Published by Que Corporation

11711 N. College Avenue
Carmel, IN 46032

29al000.boo Page 1

EDITION Edition Notice

First Edition (December 1992)

This edition replaces and makes obsolete the previous editions,
Systems Application Architecture Common User Access Guide to User
Interface Design, SC34-4289-00 and Systems Application Architecture
Common User Access Advanced Interface Design Reference, SC34-4290-00.

Order publications through your IBM representative or the IBM branch
office serving your locality. Publications are not stocked at the
address below.

A form for comments appears at the back of this publication. If the
form has been removed, address your comments to:

IBM Corporation

Department T45

P.0. Box 60000

Cary, North Carolina 27512-9968
U.S.A.

You can fax comments to (919) 469-7718. Comments can also be sent
electronically to IBM by using the following methods:

Internet address cua_reader_comments@vnet.ibm.com

Bitnet address cua_rdrc at vnet

IBM MAIL Exchange usib4hf5 at ibmmail

When you send information to IBM, you grant IBM a non-exclusive right
to use and distribute the information in any way it believes
appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 1989, 1992.
All rights reserved.

Note to U.S. Government Users -- Documentation related to restricted

rights -- Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

29al000.boo Page 1

CONTENTS Table of Contents

NOTICES Notices

EDITION Edition Notice

CONTENTS Table of Contents

CHANGES Summary of Changes

EFRONT 1 Notices

EFRONT 1.1 Trademarks

FRONT 1.2 Acknowledgments

FRONT 1.3 Foreword

PREFACE About This Book

PREFACE.1 How This Book is Organized

PREFACE.2 Who Should Read This Book

PREFACE.3 Conventions Used in This Book

PREFACE.4 Related Publications

PREFACE.S Please Tell Us What You Think!

1.0 Part 1. CUA Design Guide

1.1 Chapter 1. User Interfaces and Object Orientation

1.1.1 What Is the Common User Access User Interface?

1.1.2 Who Will Use the CUA User Interface?

1.1.3 Object Orientation in the CUA User Interface

1.1.4 Objects

1.1.4.1 Object Classes

1.1.4.2 Object Hierarchies and Inheritance

1.1.5 The Distinctions between Object-Oriented User Interfaces and Object-Oriented Programming
1.6 Benefits of an Object-Oriented User Interface

1.2 Chapter 2. Models of a User Interface

1.2.1 A User's Conceptual Model

—
N
N}

A Programmer's Model

A Designer's Model
Object Relationships
Visual Representations
Interaction Techniques and Mechanisms
Accommodating the Differences between a User's Conceptual Model and a Designer's Model
Accommodating the Programmer's Model in the Designer's Model
Chapter 3. Goals and Design Principles of the CUA User Interface
Design Principles That Place a User in Control
Using Modes Judiciously
Displaying Descriptive and Helpful Messages
Providing Immediate Actions, Feedback, and Reversible Actions
Accommodating Users with Different Levels of Skill
Making the User Interface Transparent
Allowing a User to Customize the User Interface
Design Principles That Reduce a User's Memory Load
Defining Meaningful and Concise Object Classes
Making Objects Concrete and Recognizable
Design Principles That Contribute to Consistency
Sustaining the Context of a User's Task
Maintaining Continuity within and among Products
Creating Aesthetic Appeal
Using Visual Metaphors
Chapter 4. Key Components of the CUA User Interface
Workplace
Folders and Work Areas
Icons
Pointers and Cursors
The Pointer
The Cursor
Windows
Views
Interaction with Objects
Drag and Drop
Pop-up Menus
Choices and Controls
Selection
Copying and Creating Objects

L EEREERERFEEEE L EEEELRREEEEFEF EEEREE

Keeping a User Informed

29al000.boo Page 1

FPEELLER

—
o
N}

b

—
o
o

i

1}

—
o
-
—

EEEEEEEREEEEEERET RERRE

2.2
2.2.1

2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.2.13
2.2.14
2.2.15
2.2.16
2.2.17
2.2.18
2.2.19
2.2.20

292l000.boo

Messages
Progress Indicators
Information Areas
Status Areas
Emphasis
Exception Handling
Help
Chapter 5. The CUA Designer's Model--A Summary
CUA Class Hierarchy
CUA Containment
CUA Visual Representations
CUA Views
CUA Interaction Mechanisms
Chapter 6. Designing a Product with a CUA User Interface
Overview of the Development Process
Researching and Planning the Product
Step 1. Gathering Requirements from Management
Step 2. Learning about Users and Their Tasks

Step 3. Matching Management's Requirements to the Users' Tasks

Designing the Product
Step 1. Defining the Objects
Step 2. Determining the Necessary Views
Step 3. Designing the Menus
Step 4. Designing the Windows
Using the Product
Scenario of Use

Part 2. CUA Reference

Chapter 7. Overview
Operating Environment
Types of Objects

Creating New Objects
Elements of the User Interface
Views of Objects
Icons
Windows
Choices
Controls
User Interaction
Selection
Data Transfer
Direct Manipulation
Scrolling
Pointers and Cursors
Cues
Visible Cues
Audible Cues

Chapter 8. Common User Access Interface Components
How to Use the CUA Reference
Action Choice (Choice Type)
Action Message
Action Window
Active Window
Audible Feedback
Automatic Selection
Cascaded Menu
Check Box (Control)

Choice

Clear (Choice)
Clipboard

Close (Choice)
Column Heading
Combination Box (Control)
Container (Control)
Contextual Help
Control

Copy (Choice)
Create (Choice)

Page 2

292l000.boo

Cursor

Cut (Choice)

Data Transfer

Default Action

Delete (Choice)

Delete Folder (Object)
Descriptive Text
Device (Object)

Direct Manipulation

Drop-Down Combination Box (Control)
Drop-Down List (Control)

Edit Menu

Entry Field (Control)
Extended Selection
Field Prompt

File Menu (ARpplication-Oriented)
File Menu (Object-Oriented)

Find (Choice)

First-Letter Cursor Navigation

Folder (Object)
General Help (Choice)
Group Box

Group Heading

Help Index (Choice)
Help Menu

Hide (Choice)

Icon

Inactive Window
Include (Choice)
Information Area
Information Message
Input Focus

In-Use Emphasis (Cue)
Keyboard

Keys Help

List Box (Control)
Marquee Selection
Maximize (Choice)
Menu (Control)

Menu Bar

Message

Minimize (Choice)
Mnemonic

Mouse

Move (Choice)
Multiple Selection
New (Choice)
Notebook (Control)
Object

Open (Choice)

Open As (Choice)
Open (Action Window)
Options Menu

Paste (Choice)
Pointer

Pointer (Predefined)
Pointing Device
Point Selection

Point-to-Endpoint Selection

Pop-Up Menu
Primary Window
Print (Choice)

Product Information (Choice)

Progress Indicator
Pull-Down Menu
Push Button (Control)

Push Button (Predefined)

Page 3

2.2.88 Radio Button (Control)
2.2.89 Random-Point Selection
2.2.90 Reflection (Object)

2.2.9 Refresh and Refresh Now (Choice)
2.2.92 Restore (Choice)

2.2.93 Routing (Choice Type)
2.2.94 Save (Choice)

2.2.95 Save As (Action Window)
2.2.96 Save As (Choice)

2.2.97 Scroll Bar

2.2.98 Scrolling Increment
2.2.99 Secondary Window

2.2.100 Select All and Deselect All (Choice)
2.2.101 Selected Menu

2.2.102 Selected-State Emphasis (Cue)
2.2.103 Selection Types and Techniques
2.2.104 Separator

2.2.105 Settings (Choice Type)
2.2.106 Shortcut Key

2.2.107 Short Menus and Full Menus (Choice)
2.2.108 Single Selection

2.2.109 Size (Choice)

2.2.110 Slider (Control)

2.2.111 Sort (Choice)

2.2.112 Source Emphasis (Cue)

2.2.113 Spin Button (Control)

2.2.114 Split (Choice)

2.2.115 Split Window

2.2.116 Status Area (Cue)

2.2.117 System Menu

2.2.118 Target Emphasis (Cue)

2.2.119 Text Entry

2.2.120 Tool Palette

2.2.121 Tutorial (Choice)

2.2.122 Unavailable-State Emphasis (Cue)

2.2.123 Undo and Redo (Choice)

2.2.124 Using Help (Choice)

2.2.125 Value Set (Control)

2.2.126 View Menu

2.2.127 Warning Message

2.2.128 Window

2.2.129 Window Layout

2.2.13 Window List

2.2.13 Window List (Choice in System Menu)

2.2.132 Window List (Choice in Windows Menu)

2.2.133 Window Navigation

2.2.134 Windows Menu

2.2.135 Window Title

2.2.136 Work Area (Object)

2.2.137 Workplace

A.Q Appendix A. Applying CUA Concepts to Touch Input and Multimedia User Interfaces
Al Design Considerations for Touch Input

A.1l.1 Deciding When Selection Occurs

A.1.2 Making Selection Easy and Accurate

A.2 Design Considerations for Multimedia

A.2.1 Displaying and Manipulating Multimedia Information

A.2.2 Accommodating Different System Configurations

B.O Appendix B. Design Considerations for the Use of Color

c.0 Appendix C. Comparison of 1989 and 1991 Rules and Recommendations
D.O Appendix D. Common User Access and National Language Support

D.1 General Considerations for National Language and the CUA Guidelines
D.2 Double-Byte Character Sets

D.3 Bidirectional Languages

D.3.1 Language Usage

D.3.2 Orientation

D.3.3 RTL Flavor of CUA-Interface Components

D.3.4 Entry Fields

29al000.boo Page 4

Navigation in a RTL Window
Key Assignments
Appendix E. Translated Terms
Arabic
Brazilian Portuguese
Chinese
Danish
Dutch
Finnish
French and French (Canadian)
German

FEEEEEEEEEEE

Hebrew

el
—
=3

Italian
Japanese

LE

Korean

el
—
oo

Norwegian

3

Portuguese

el
—
jon

it

Spanish
Swedish
Appendix F. Documenting the CUA User Interface in Products
General Terminology Guidelines
How to Use This Table
Glossary
Recommended Readings
Getting Started
User Interface Technology and Techniques
User-Centered Design: General Principles
User-Centered Design: Case Studies
Understanding Users and Their Tasks
Object-Oriented Programming and Design
National Language Support
Index

29al000.boo Page 5

CHANGES Summary of Changes

This manual contains the following changes:
Part 1. CUA Guide: minor editorial changes were made.
Part 2. CUA Reference: the following additions and changes were made.

Chapter 8, "Common User Acce Interface Components":

Action Window The first guideline was moved to the When to Use
section.
Help Menu The fifth guideline was changed from recommended

to fundamental.

Keyboard The functions and descriptions of the Shift+F8 and
F8 keys were modified.

Notebook (Control) The graphic was modified.

Pointer The first When to Use was changed from fundamental
to recommended.

View Menu The graphic was modified.
Windows Menu A fundamental guideline was added.
Workplace The second guideline recommended.

- Value set control was added to Appendix C, "Comparison of 1989 and

1991 Rules and Recommendations"™ in topic C.Q.

- Information was moved and headings were changed in several of the
bidirectional language usage sections of Appendix D, "Common User
Access and National Language Support" in topic D.0Q.

29al000.boo Page 1

FRONT_1 Notices

The following paragraph does not apply to the United Kingdom or any
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE PUBLICATION "AS
IS" WITHOUT IMPLIED WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimers
of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This publication could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product (s) and/or the program(s)
described in the publication at any time.

It is possible that this publication may contain reference to, or
information about, IBM products (machines and programs), programming, or
services that are not announced in your country. Such reference or
information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Requests for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

IBM and others may have patents or pending patent applications or other
intellectual property rights covering subject matter described herein.
This document neither grants nor implies any license or immunity under any
IBM or third party patents, patent applications or other intellectual
property rights other than t® Copyright License described herein.

IBM assumes no responsibility for any infringement of third-party rights
that may result from the use of the Specifications disclosed in this
publication or from the manufacture, use, lease, or sale of the programs
created using or containing the Specifications.

With respect to any IBM patents, you can send license inquiries, in
writing, to the IBM Director of Commercial Relations, IBM Corporation,
Purchase, NY 10577.

COPYRIGHT LICENSE: Program developers may use and copy these Common User
Access Specifications in any form without payment to IBM, for the purpose
of developing their own original programs conforming to these
Specifications and for the purpose of using, reproducing, marketing or
distributing such programs. Program developers, in consideration for the
Copyright License, agree not to assert any copyright claim against IBM or
any third party with respect to the Common User Access Specifications, and
any additions or modifications thereto.

Each copy of any portion of these Specifications or any derivative work,
which is distributed to others, must include a copyright notice as
follows: " (© Copyright (your company name), (year). All Rights
Reserved."

For online versions of this book, we authorize you to:

J Copy, modify, and print the documentation contained on the media, for
use within your enterprise, provided you reproduce the copyright
notice, all warning statements, and other required statements on each
copy or partial copy.

3 Transfer the original unaltered copy of the documentation when you
transfer the related IBM product (which may be either machines you
own, or programs, if the program's license terms permit a transfer).
You must, at the same time, destroy all other copies of the
documentation.

29al000.boo Page 1

You are responsible for payment of any taxes, including personal property
taxes, resulting from this authorization.

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Some jurisdictions do not allow the exclusion of implied warranties, so
the above exclusion may not apply to you.

Your failure to comply with the terms above terminates this authorization.
Upon termination, you must destroy your machine readable documentation.

FRONT 1.1 Trademarks
ERONT 1.2 Acknowledgments
FRONT 1.3 Foreword

29al000.boo Page 2

FRONT_1.1 Trademarks

The following terms, denoted by an asterisk (*) on their first occurrences
in this publication, are trademarks of the IBM Corporation in the United

States or other countries:

Common User Access
CUA
IBM
Operating System/2
0S/2

29al000.boo Page 1

FRONT_1.2 Acknowledgments

We wish to thank all the people at IBM who helped make the Common User
Access* (CUA*) guidelines for object-oriented user interfaces possible.
In addition, we include all those at IBM who made the publishing of this
book possible.

John Bennett

Karen Bernard
Richard (Dick) Berry
Greg Bonadies

Jenny Kotora-Lynch
Marcos Lam

Lee Laske

Theo Mandel

Fred Brown Dean Marsh
Juanita Couch

Joe Coulombe

Wendy Geene Coulombe
Dean Duff

Lorraine Elder

Shirley Martin
Skip McGaughey
Dick Oakley
Rebecca Oliver
Rosalind Radcliffe
Sarah Redpath
Cliff Reeves
Justin Richards

Jim Farver
Katie Frye
Dana Gillihan
Al Groelle
William Gunn

Tom Richards
Dave Roberts

Anthony Hall
Tom Hanson
Lee Harold

Cindy Roosken
Chuck Schafer
David Schwartz

Haydon Harrison Bob Shi
Rodney Smith
Don Spencer

Sue Henshaw
Greg Hill
Dave Hock Deborah Swain
Tommy Horne Karl von Gunten
Kay Jolly Rick Zevin

Not included in the list, but also important contributors are all the

Architecture Review Board participants. Thank you all.

29al000.boo Page 1

FRONT_1.3 Foreword

The IBM Common User Access* guidelines are intended to help product
designers and developers create an interface that the user will find easy
to learn and use. They are based on sound principles of interface design
and on object-oriented relationships. Moreover, the guidelines reflect
recent advances in personal computing technology and the growing demand by
users that computers match their way of thinking.

The object-oriented workplace shell of IBM's new 0S/2* 2.0 operating
system is based on these guidelines. 0S/2 2.0 users can interact
intuitively and easily with objects because each object clearly represents
a real workplace task. Thus a user can transfer knowledge about an object
from the real world to the computer environment. The user can also
transfer knowledge from one product to another, as well as predict how
something new will work, thanks to consistent interface design.

As a result, end users of CUA products should experience higher
productivity and satisfaction, while producing fewer errors.

This official guide, which combines two books originally published in the
fall of 1991, is divided into two sections. The first--the "CUA Design
Guide"--describes principles, components and techniques of user interface
design and describes the process of designing a product with a CUA
interface. The "CUA Reference" section identifies the CUA interface
features, or components, and provides guidelines for using them.

We in IBM are especially proud of the Object-Oriented Interface Design.
It is the work of a team of talented people at IBM. Their effort was
recognized recently when they received the Thomas J. Watson, Jr., Design
Excellence Award. As the award noted, "The CUA Design is revolutionary,
in that it places a user's data first and foremost."

I hope these guidelines contribute to your excellence by helping you make
the users of your applications more productive in their personal
computing.

Earl F. Wheeler

IBM Senior Vice President
and General Manager

Programming Systems

Somers, NY

29al000.boo Page 1

PREFACE About This Book

This book describes the guidelines that define the Common User Access*
(CUA*) user interface. The Common User Access (CUR) user interface is an
object-oriented graphical user interface that provides a consistent look
and feel for products that adopt the CUA interface as their standard.

PREFACE.]1 How This Book is Organized
PREFACE.2 Who Should Read This Book
PREFACE.3 Conventions Used in This Book
PREFACE.4 Related Publications
PREFACE.S5 Please Tell Us What You Think!

29al000.boo Page 1

PREFACE.1 How This Book is Organized

This book has two parts plus appendixes and a glossary.

~ Part 1, "CUA Design Guide" in topic 1.0 describes principles,
components, and techniques of user interface design in general, as
applied to a variety of software products for a variety of operating
environments. Although it describes the process of designing a
product with a CUA interface in particular,_Part 1, "CUA Design Guide"

is not a "cookbook" for producing a product with a CUA interface;
instead, it is more like a textbook, intended to expose designers to
the concepts that they should consider when designing any kind of user
interface.

_ Part 2, "CUA Reference" in topic 2.0 identifies the CUA interface
components and lists all of the fundamental and recommended guidelines
for designing and developing a product with a CUA interface for a
programmable workstation. It provides an alphabetically arranged list
of the interface components that are defined in the CUA interface.
The graphical representations shown are examples only and are not
intended to define how a component should appear in the interface for
a particular product.

Note that neither Part 1 nor Part 2 tells a designer how to create a
specific product or part of a product. That is, the CUA guidelines do
not tell a designer how to design an accounting product or a balance
sheet, for example.

- The Appendixes contain the following information:

- Design considerations for multimedia and touch input

- Design considerations for the use of color

- CUA interface National Language Support

- Help for documenting the CUA interface in product publications and
online information.

29al000.boo Page 1

PREFACE.2 Who Should Read This Book

- Part 1, "CUA Design Guide" is primarily intended for software
designers and user-interface designers, although programmers will want
to read it to gain a general knowledge of the Common User Access user
interface and the design process. You should be familiar with icons,
windows, menus, and other components of graphical user interfaces, as
well as with interaction techniques involving a pointing device, such

as a mouse.

- Part 2, "CUA Reference" is primarily intended for application
programmers planning to incorporate CUA interface design into new or
existing applications. Use this book together with interface-building
tools to produce applications that follow the CUA guidelines. You
should have a thorough understanding of one or more programming
languages, concepts, and techniques.

29al000.boo Page 1

PREFACE.3 Conventions Used in This Book

The following conventions are used in this book.

- If a term is defined in the glossary (see "Glossary" in topic BACK 1)
the term appears in italic type the first time or the most prominent
time it is mentioned in the text.

- If a term represents a term that is found in a user interface--for
example, in a window, in a menu, as a label for an icon, and so
on--the term appears in bold type each time it is mentioned in the
text.

29al000.boo Page 1

PREFACE.4 Related Publications

The following manuals can be ordered through your IBM representative or
your local IBM branch office.

- Systems Application Architecture Common User Access Basic Interface
Design Guide (SC26-4583)

Published in December 1989 by the IBM Corporation, this book addresses
the design of software products for nonprogrammable terminals.

_ Systems Application Architecture Common User Access Basic Interface
Design Guide 1991 Addenda (GG22-9508)

Published in September 1992 by the IBM Corporation, this book
supplements SC26-4583.

_ Systems Application Architecture Common User Access Guide to User
Interface Design, (SC34-4289) and the Systems Application Architecture
Common User Access Advanced Interface Design Reference, (SC34-4290

Published by the IBM Corporation in October 1991, these books were
combined into this book in an effort to make the current CUA
information available in a more accessible form for a broader
audience.

— The CUA Vision: Bringing the Future into Focus (G242-0215)
Published by the IBM Corporation in October 1991, this package
contains a DOS-compatible demonstration program and brochure of a CUA
interface.

— The CUA Vision: Bringing the Future into Focus (GV26-1003)
Published by the IBM Corporation in October 1991, this VHS videotape
(GV26-1004 is in PAL format and GV26-1005 is in SECAM format)
illustrates IBM's vision of how its customers will use computers in
the future.

- CUA Guide to Multimedia User Interface Design, (S41G-2922).

Published by the IBM Corporation in June 1992, this book addresses the

design of multimedia products for the programmable workstation

environment.

29al000.boo Page 1

PREFACE.5 Please Tell Us What You Think!

We hope you find this book useful and informative. If you like what we
have done, please let us know; if not, please tell us why. We will use
your comments to make the book better.

Please use one of the methods listed below to send your comments to IBM.
Whichever method you choose, make sure you send your name, address, and
telephone number if you would like a reply.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate without
incurring any obligation to you.

To send comments by mail or FAX, use the form titled "What Do You Think?"
at the back of this book.

If you are mailing from a country other than the United States, you can
give the form to the local IBM branch office or IBM representative for

postage-paid handling.

To FAX the form, use this number: (919) 469-7718.

To send comments electronically, use one of the following network IDs:

IBM Mail Exchange: usib4hf5 at ibmmail

IBM Bitnet: cua_rdrc at vnet
Internet: cua reader comments@vnet.ibm.com

Thank you! Your comments help us make our information more useful for
you.

29al000.boo Page 1

1.0 Part 1. CUA Design Guide

—
—

LEEEE

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

2921000.boo

o Us W N

User Interfaces and Object Orientation

Models of a User Interface

Goals and Design Principles of the CUA User Interface
Key Components of the CUA User Interface

The CUA Designer's Model--A Summary

Designing a Product with a CUA User Interface

Page 1

1.1 Chapter 1. User Interfaces and Object Orientation

A user interface is the set of techniques and mechanisms that a person
uses to interact with an object. Any kind of object has a user interface,
and an object's interface is developed according to a user's needs and
reasons for using the object. A user interface can be a set of buttons,
like those on a telephone or video recorder. In the case of a computer, a
user interface can include a keyboard, a pointing device, and the items
that appear on a display screen. The user interface is the means by which
a user communicates with a computer and vice versa. Many types of user
interfaces are available for computers, including:

_ Command-line user interfaces, in which a user remembers commands and
types them

_ Menu-driven user interfaces, in which a user is provided with a
hierarchically organized set of choices

_ Graphical user interfaces, in which a user points to and interacts
with visible elements of the interface by using a pointing device.

.1.1 What Is the Common User Access User Interface?

1.1.2 Who Will Use the CUA User Interface?

1.1.3 Object Orientation in the CUA User Interface

1.1.4 Objects

1.1.5 The Distinctions between Object-Oriented User Interfaces and Object-Oriented Programming
.1.6 Benefits of an Object-Oriented User Interface

29al000.boo Page 1

1.1.1 What Is the Common User Access User Interface?

The Common User Access user interface is a graphical user interface that
incorporates elements of object orientation, an orientation in which a
user's focus is on objects and in which the concept of applications is
hidden. Objects and object orientation are discussed in more detail in
"Object Orientation in the CUA User Interface" in topic 1.1.3. The CUA

user interface is based on principles of user-interface design, on
object-oriented relationships, and on field experience and user testing.

The CUA guidelines provide information about how the model on which a
product is based should be conveyed to a user. The CUA guidelines also
include specific details about designing and developing computer software
and user interfaces. Products that adhere to the CUA guidelines and
undergo usability testing should be comparatively easy to learn and use.
As a result, users of products with a CUA user interface should find the
products satisfying to use, efficient, and appropriate for the tasks that
the users want to accomplish.

29al000.boo Page 1

1.1.2 Who Will Use the CUA User Interface?

Although this book is intended for product designers, the CUA user
interface itself is intended for a group of end users known as "knowledge
workers." This group includes the many people around the world who make
their living by working with information, which provides the basis for the
decisions they make. These people might work in offices or in airplanes
or anywhere they can have access to a computer.

However, the CUA user interface is not necessarily appropriate for every
possible user of computers. For example, the CUA user interface might not
be the most efficient interface for someone who performs a single, highly
specialized task, such as the tasks in manufacturing process control or in
retail sales. The CUA interface is most appropriate for users who perform
a variety of information-related tasks.

29al000.boo Page 1

1.1.3 Object Orientation in the CUA User Interface

Graphical user interfaces, including the CUA interface, are becoming more
object-oriented. Object-oriented user interfaces allow for the
development of a cohesive working environment in which each element,
called an object, can interact with every other element. The objects that
users require to perform their tasks and the objects used by the operating
environment can work cooperatively in one seamless interface. That is,
the boundaries that distinguish applications from operating systems are no
longer apparent to users.

The most readily apparent feature of an object-oriented user interface is
the pervasive focus on objects, as well as the principles applied to those
objects, such as object classes, object hierarchies, and inheritance.
These are discussed in the following sections.

29al000.boo Page 1

1.1.4 Objects

In the real world, an object is an item that a person requires to perform
work. For example, an accountant's objects might include a ledger and a
calculator. An architect's objects might include blueprints, a T square,
and a sharp pencil. 1In the CUA environment, an object is any visual
component of a user interface that a user can work with as a unit,
independent of other items, to perform a task. A spreadsheet, one cell in
a spreadsheet, a bar chart, one bar in a bar chart, a report, a paragraph
in a report, a database, one record in a database, and a printer are all
objects. Each object can be represented by one or more graphic images,
called icons, that a user can interact with, much as a user can interact
with objects in the real world.

However, an object need not always be represented by an icon, and not all
interaction is accomplished by way of icons. A user can interact with an
object by opening a window that displays more information about the object
and contains a variety of mechanisms for interacting with the object. A
user can also manipulate an object within a window. Icons, windows, and
interaction with objects are discussed in more detail in_"Icons" in

topic 1.4 "Windows" in topic 1.4.5, and "Interaction with Objects" in
topic 1.4.6.

1.1.4.1 Object Classes
1.1.4.2 Object Hierarchies and Inheritance

29al000.boo Page 1

1.1.4.1 Object Classes

The CUA environment includes three types, or classes, of objects:

Container objects
Data objects

Device objects.

Each class of objects has a primary purpose that distinguishes it from the
other classes, and all three types of objects can contain other objects.

1.1.4.1.1 Container Objects

1.1.4.1.2 Data Objects
.4.1.3 Device Objects

29al000.boo Page 1

1.1.4.1.1 Container Objects

A container object holds other objects. Its primary purpose is to provide

a way for a user to group related objects for easy access and retrieval.
An operating system typically provides a general-purpose container--for
example, a folder--that can hold any type of object,

including other
containers.

Products often provide product-specific containers that have special

features to serve the needs of the product's users. For example, a

graphics product might provide a portfolio container in which a user could
store and sort artwork according to subject matter or technique.

G
=

S

i
.
.
o

e
G
-

L
B
g

£
CTETES

My Portfolio

Figure 1. Container Objects. A folder object and a portfolio object are

examples of container objects. Each provides a way for a user
to group related objects for easy access and retrieval. The
window to the right of the folder object labeled My Folder
displays the folder's contents, including a portfolio object.
The window below the folder's window displays the contents of
the portfolio object labeled My Portfolio. In this example,
folder objects can contain portfolio objects, and portfolio
objects can contain folder objects.

29al000.boo Page 1

1.1.4.1.2 Data Objects

The primary purpose of a data object is to convey information, such as
text or graphics, or audio or video information. An example of a data
object might be a newsletter object, which could contain text objects and
graphic objects. Because the primary purpose of each object (text,
illustration, and newsletter as a whole) is to convey information of
interest to readers, each is considered a data object.__Figure 2 shows an

example of a data object.

il alte comm mu constued vip ex
notres et 1ebo incuen ni comodo
OMMUn nom. Yemnami quir eos
fisr. Eroat colust eut et labore
quie notsius dimuo temporal emit
consectu minumal velcao et temp
niurm sre systemic nom. Yemnami disr et.

quie notsius dimu nami quir eoa mun nam.

Er notsius dimu temporal Tebo incuen ni

nom. Yemnami quir eos notres et 1ebo et
¥em il alte commat colust eut et eos mun nom

Graphic object Text object

Figure 2. Data Object. A newsletter object is an example of a data
object. It conveys information to a reader. It can also
contain text objects and graphic objects, which are data objects
as well.

f29al000.boo Page 1

1.1.4.1.3 Device Objects

A device object often represents a physical object in the real world. For
example, a mouse object can represent a user's pointing device, and a
modem object can represent a user's modem. Some device objects represent
a logical object in a user's computer system rather than a physical
object. For example, a wastebasket object can represent a logical object
that disposes of a user's other objects, and an electronic mail out-basket
can represent a logical object that delivers electronic mail to an
intended recipient. The primary purpose of a device object is to provide
a means of communication between a computer and another physical or
logical object.

Some device objects can contain other objects. For example, a printer
object can contain a queue of objects to be printed, and an electronic
mail out-basket object can contain objects to be sent to the user of
another computer system. Other device objects simply have settings that a
user can configure. Device objects that contain other objects typically
act on the contained objects. For example, a printer object will print
the objects it contains, and an out-basket object will deliver objects to
the intended recipient.__Figure 3 shows two device objects.

PICTURE 3

Figure 3. Device Objects. A printer object represents a physical device,
and an electronic mail out-basket represents a logical device.

f29al000.boo Page 1

1.1.4.2 Object Hierarchies and Inheritance

Objects can be grouped according to similarities in appearance and
behavior. These groups can then be arranged into object hierarchies. One
relationship that can be illustrated in a hierarchy is inheritance. An
object that appears below another object in the hierarchy has all of the
characteristics of the object or objects above it. The object is said to

"inherit" those characteristics.

Data lobjed

%

[|
Text ohject Chart ohject
I |

T T 1

temo Formletter Repon Catalog Barchart Fie chart
ohject object ohject object ohject object

Figure 4. An Object Hierarchy Illustrating Inheritance. Each object that
appears below another object in the hierarchy inherits all of
the characteristics of the object or objects above it and can

add new characteristics of its own.

In the hierarchy shown in Figure 4, a bar chart inherits all of the
characteristics of a chart object, but none of the characteristics unique
to a memo. However, a bar chart object and a memo object will have in

common those characteristics that each inherited from a data object.

Other types of hierarchies are possible. For example, objects can be
arranged in a containment hierarchy that illustrates which objects can
contain which other objects.__Figure 5 illustrates a possible containment
hierarchy.

SCheen

YWorkplace
I

Graph
ohject

Folder Other containers

Figure 5. An Object Hierarchy Illustrating Containment. Each object that
appears below another object in the hierarchy can be contained

by the object or objects above it.

29al1000.boo Page 1

1.1.5 The Distinctions between Object-Oriented User Interfaces and Object-Oriented Programming

Object-oriented user interfaces share some concepts with object-oriented
programming. However, the concepts are manifested differently. 1In an
object-oriented user interface, the objects that a user works with do not
necessarily correspond to the objects, or modules of code, that a
programmer used to create the product. Inheritance and hierarchy in an
object-oriented user interface are more subtle than in object-oriented
programming. They are based on similarity in appearance and behavior,
rather than on superclasses and subclasses of objects. Finally, an
object-oriented interface incorporates the concept of containment, which
has no parallel concept in object-oriented programming.

An important point for a designer to remember is that while
object-oriented programming can facilitate the development of an
object-oriented user interface, it is not a prerequisite. An
object-oriented user interface can be developed with more traditional
programming languages and tools.

29al000.boo Page 1

1.1.6 Benefits of an Object-Oriented User Interface

Users sometimes are intimidated by the technical aspects of an operating
system. An object-oriented user interface shields users by allowing them
to interact with objects rather than with a distinct operating system and
with separate applications that are often incompatible with one another.
A user can focus more closely on the task at hand without having to be so
conscious of the tools involved. Object orientation reflects the way a
person works in the real world. For example, someone writing a memo can
concentrate on the message without paying much attention to the tools
being used to accomplish the task--pencil and paper in the real world, a
memo object in an object-oriented user interface. When working in an
object-oriented environment, users can be completely unaware that they are
using an editor application to do their writing.

Furthermore, a fully object-oriented user interface provides a seamless
environment in which a user's interaction with objects is the same across
tasks. For example, a user can copy, move, delete, and open all objects
the same way, no matter what the user's current task is or which objects
are involved. A user could copy a graphic and move it into a cell in a
spreadsheet, then place the spreadsheet into a document. Then the user
could send the entire resulting object to someone else by placing it into
an electronic mail out-basket. Each object is completely compatible with
every other object, and objects can be combined and separated freely.

Most commercially available graphical user interfaces do not provide fully
object-oriented user environments. They still rely on applications--that
is, separate programs--many of which are not compatible and thus pose
barriers to certain types of user interaction. The CUA user interface
encourages full object orientation in user interfaces.

29al000.boo Page 1

1.2 Chapter 2. Models of a User Interface

The term model is used in this book to refer to a descriptive
representation of a person's conceptual and operational understanding of
something. Some models are explicit and are consciously designed. These
models typically can be represented by a diagram or a textual description.
Other models, called mental models, are developed unconsciously. People
create a mental model by putting together sets of perceived rules and
patterns in a way that explains a situation. A typical person cannot draw
or describe his or her mental model. In many situations, a person is not
aware that the mental model exists.

A mental model does not necessarily reflect a situation and its components
accurately. Still, a mental model helps people predict what will happen
next in a given situation, and it serves as a framework for analysis,
understanding, and decision-making.

With respect to user interfaces, three models come into play:

3 A user's conceptual model
al A programmer's model
J A designer's model.

A user's conceptual model is a mental model. A programmer's model and a
designer's model are explicit, consciously designed models. Each model
represents a different audience's perspective of a user interface.
Figure 6 illustrates the three audiences and the factors that influence
their perspectives.

Platform
Operating system

Development tocks

Figure 6. Factors That Influence the Three Models of a User Interface. A
user's conceptual model, a programmer's model, and a designer's
model represent the perspectives of three different audiences
for a software product. A user's conceptual model is influenced
by the user's experiences in the real world, including
experience with other computer systems. A programmer's model is
influenced by the operating platform, the operating system, the
shell, the tools, and the guidelines that are used to develop a
product. A designer's model is influenced by the user's
conceptual model, the programmer's model, and user interface
design principles and guidelines.

The models for each audience are discussed in the following sections.

1.2.1 A User's Conceptual Model

29al000.boo Page 1

.2.2 A Programmer's Model

.2.3 A Designer's Model

1.2.4 Accommodating the Differences between a User's Conceptual Model and a Designer's Model
1.2.5 Accommodating the Programmer's Model in the Designer's Model

29al000.boo Page 2

1.2.1 AUser's Conceptual Model

A user's conceptual model is a mental model consisting of the set of
relationships that a person perceives to exist among elements of any
situation. A person develops a conceptual model through experience and
then develops expectations based on the relationships in the model.

When confronted with a new situation, a person tries to interpret it by
comparing it, often unconsciously, to some existing model. For example,
if a computer user sees an object on a computer screen, and the object
resembles a familiar object, say a telephone, the user transfers concepts
from his or her existing model of telephones and makes guesses about how
the computer's telephone object might work. Although this might seem to
be a hit-or-miss approach to new situations, it is more efficient than
building a new model from scratch, and people are satisfied when a new
situation fits into their existing models.

However, if an existing model does not explain a new situation, and if
people are unable to develop a new model, they become uncertain; they
proceed hesitantly, and they can become frustrated, perhaps abandoning the
new situation entirely because it is too unfamiliar. A user's conceptual
model is somewhat resistant to change, but it can change over time as a
user collects new evidence that helps a user refine or redefine the model.

To understand a user's conceptual model, a designer must understand a
user's experiences (such as educational background and job training, as
well as previous interaction with machines) and working environment (such
as the type of hardware and system software in use). Also, a designer
must understand what kinds of information a user needs and what functions
a computer system should offer to help a user perform a task.

Unfortunately, a designer cannot simply ask all potential users of a
product to describe or draw pictures of their conceptual models; most
users are unaware that they have a conceptual model. Even users who are
aware that they have expectations about a situation typically cannot
provide the analytical insight that a designer needs. So a designer must
gather information through techniques such as:

Analysis of a users' tasks

Surveys and interviews of actual or potential users
Visits to users' work sites

Feedback from users

Usability testing.

I

Because each user's conceptual model is influenced by different
experiences, no two users' conceptual models are exactly alike. Still,
these techniques can help a designer compile a fairly complete picture of
the conceptual models of a cross-section of users. A designer can then
use this information, along with good design judgment and the CUA design
principles and guidelines, to make decisions about how to design a
product's user interface.

29al000.boo Page 1

1.2.2 AProgrammer's Model

A programmer's model represents a product or a computer system from the
perspective of the person who writes the code that makes the product or
system work. A programmer's model is often very different from both a
user's model and a designer's model (described in the next section)
because it necessarily includes a more thorough understanding of the
computer hardware and supporting software that make a product or system
run.

A programmer typically could draw a picture of a programmer's model
because a programmer's model is more explicit than a user's conceptual
model and is consciously created. The programmer's model concentrates
primarily on the objects and relationships that the programmer uses to
implement a product. For example, a programmer's model might include an
object consisting of typed data fields in records in an indexed file. 1In
a user's conceptual model, the same object would simply be an address
book. 1In a designer's model, the concepts would be represented as a group
of logically related objects (people's names, addresses, and telephone
numbers) that make up an address book object. A programmer requires a
level of understanding different from the level required by users.
Therefore, although the elements of a programmer's model are vital to the
development of a product, a designer should take care to mask the
technical details, hiding them from a user without impairing a product's
function.

29al000.boo Page 1

1.2.3 ADesigner's Model

A user-interface designer is like an architect. Just as an architect must
understand the perspective of the person who is going to live in a house,
as well as the perspective of the person who is going to build the house,
a user-interface designer must understand the perspectives of the end user

and the programmer.

A designer's model influences and is influenced by both the user's
conceptual model and the programmer's model. There is no direct
relationship between the user's conceptual model and the programmer's
model.__Figure 7 shows how the three models are related.

Designer's
todel

Uszer's
Conceptual
hdodel

Frogrammer's
hdodel

PICTURE 7

Figure 7. The Relationship among the Models of User Interfaces. A
designer's model influences and is influenced by both the user's
conceptual model and the programmer's model. No direct
relationship exists between the user's conceptual model and the
programmer's model.

The three primary elements of a designer's model are:

| Object relationships (the objects in the interface and their
behaviors)

7 Visual representations (the "look" of the interface)

T Interaction techniques and mechanisms (the "feel" of the interface).

Figure 8 illustrates the parts of a designer's model and shows the
relationships among the parts.

29al1000.boo Page 1

The Designer's lceher

Presentation Interaction
Forexample, For example,
-Wisual representations - Interaction techniques
- Agsthetics . -Device mappings

- Standard menus

bject relationships
Forexample.
—Properties
—Behawiors
—Common metaphors

Figure 8. The Designer's Model Represented as an Iceberg. A designer's
model includes object relationships, visual representations, and
interaction techniques and mechanisms. Although the visual
representations and interaction techniques are the most visible
part of a user interface, the object relationships, which are
based on a user's conceptual model, form the bulk of the

interface.

Although the visual representations and interaction techniques and
mechanisms are the most obvious elements of a user interface, the object
representations make the most significant contribution to a product's

usability.
1.2.3.1 Object Relationships

1.2.3.2 Visual Representations
.2.3.3 Interaction Techniques and Mechanisms

29al1000.boo Page 2

1.2.3.1 Object Relationships

Object relationships are the most important part of a designer's model,
and a designer should spend a considerable amount of effort defining them.
At this stage of product development, a designer determines what objects a
user requires, what the relationships are among the objects, and what
properties and behaviors the objects should have. For example, if a
designer is developing a model of a product for a car dealership, the
designer might determine that a user--in this case a car
salesperson--needs a car object and a customer object. The user might
also need a worksheet object, in which information from both the car
object and customer object can be combined. Finally, the user might need
one or more container objects to contain the other objects.

When a designer chooses the objects and their properties, behaviors, and
relationships carefully, and accurately matches them to the relationships
in a user's existing conceptual model, the visual representations and
interaction techniques follow naturally.

Objects: Relationships + Properties + Behaviors

Figure 9. Object Relationships. A designer must decide what objects a
user requires, what the relationships are among the objects, and

what properties and behaviors the objects should possess.

f29al000.boo Page 1

1.2.3.2 Visual Representations

A designer's model also addresses the appearance of objects so that a
product's objects are visually consistent with one another as well as with
other objects in the operating environment. The two aspects to each
visual representation in a user interface are the functional aspect and
the aesthetic aspect. In designing the functional aspect of a visual
representation, a designer is concerned with usability and with how well
the visual representation conveys the purpose of the object being
represented. In designing the aesthetic aspect of a visual
representation, a designer is concerned with whether the representation is
visually pleasing. A designer considers factors such as the shape, size,
and color of the visual representation.

Typically, a designer's model provides a framework for both aspects of the
visual representations. The framework includes ways to visually indicate
to a user what the purpose or state of an object is, as well as ways to
indicate similarity among objects. For a car dealership product, a
designer might decide that all cars with prospective buyers should be
identified by a similar symbol.

Visual specifications assist a designer in maintaining visual consistency,
and they provide a foundation on which the designer can build. They also
allow a designer leeway in determining which representations are most

appropriate for a particular product.

Functional aspects: Agsthetic aspects:
- [zability

- Shape
- Purpoze l l - Size
- Calor

D &
A

Figure 10. Visual Representations. A designer must develop specifications
for the visual elements of an interface to ensure consistency.
The specifications should address the functional aspects of
visual representations, such as usability and purpose, as well

as the aesthetic aspects, such as shape, size, and color.

f29al000.boo Page 1

1.2.3.3 Interaction Techniques and Mechanisms

Finally, a designer's model addresses a user's techniques for interaction
with objects. A typical model includes more than one technique and more
than one mechanism for interaction so that users can choose the technique
and mechanism that best suits their tasks, their level of skill, and their

preferred style of interaction.

A designer's model specifies a pattern of interaction in which users
interact with similar objects in similar ways and in ways that seem
natural to users. Again, consistency should be a designer's goal when
developing this part of the designer's model. Toward that end, the CUA
interface provides substantial guidance for interaction techniques and
mechanisms. When developing a product with a CUA user interface, a
designer does not need to develop a complete model of interaction.
Instead, a designer's task is to choose from the CUA designer's model (see
Chapter 5, "The CUA Designer's Model--— ummary" in topic 1.5) those

interaction techniques that are most appropriate for a particular product.

In a car dealership product, for example, a designer might determine that
a salesperson should be able to place information into a worksheet object
in any of several ways. The salesperson could place a car object on top
of the worksheet object, thereby transferring information about the car to
the worksheet. Or the salesperson could type information directly into
the worksheet object. Finally, the salesperson could select portions of

information from the car object and copy it to the worksheet object.

Congsiztency and flexibility

LN

Input mecharnizmsz

Figure 11. Interaction Techniques and Mechanisms. A designer must specify
which techniques yield which results and must ensure that

similar interactions yield similar results.

29al1000.boo Page 1

1.2.4 Accommodating the Differences between a User's Conceptual Model and a Designer's Model

Ideally, a designer's model is equivalent to a user's conceptual model,
and a product works the way each user expects it to work. However,
various factors can lead to a disparity between a user's conceptual model
and a designer's model. For example:

3 Not all users have the same conceptual models.

| Implementation constraints can restrict the function of a product to
something less than a user expects.

l A computer product can provide useful features that do not have
corresponding components in the real world or in a user's area of
expertise, and therefore do not already exist in a user's conceptual
model.

When a designer's model does not exactly match a user's conceptual model,
the user often feels as if he or she is viewing a product through a haze,
not quite seeing or understanding the product. Some components of the
product look and behave as the user expects, while others seem somewhat
different or even foreign. To dispel the haze, a designer should expose a
user to the features of a product in a way that helps shape the user's
conceptual model to incorporate the actual designer's model. Then the two
become equivalent.

Consistency and the use of metaphors are helpful techniques for shaping a
user's conceptual model. When a new feature is consistent with a
product's other features, a user can predict at least some of the results
of using the new feature and can accept the new feature more readily.
Likewise, when a new feature is developed around a metaphor for something
that exists in a user's conceptual model, a user can make guesses about
the new feature by drawing analogies from the familiar concept. The user
can then extend the existing conceptual model to incorporate the new
feature. Electronic mail provides an example.

Although most people understand how to mail a letter by using a postal or
courier service, few immediately understand how to send information by
pressing a key on a keyboard or by placing a computer object on top of
another computer object (for example, placing a document object on top of
an out-basket object). By designing this type of information transfer
around a mail metaphor, a designer encourages a user to draw on an
existing conceptual model that describes and explains methods for getting
information from one place to another.

Furthermore, if a designer has specified an interaction technique that is
consistent with other interaction techniques that a user is familiar with,
a user will be able to extend a conceptual model of mail to include
electronic mail. For example, if a user knows how to mail a real-world
document by placing it into the office out-basket, the user can easily
learn to mail a document object by placing it into an out-basket object on
a computer.

29al000.boo Page 1

PICTURE 12

Figure 12. Metaphor. Electronic mail relies on a mail metaphor to help
users understand the underlying concept of electronic transfer
of information. To mail document objects, users place them
into an out-basket object, just as users place real-world

documents into real-world out-baskets.

A designer's model must also be flexible enough to accommodate growing
sophistication in users. As users become more proficient in using a
product, they might find that they do not like certain aspects of the
interface, or they might realize that they want or need functions that
they had not thought of before. A successful designer anticipates a
user's progress and provides mechanisms that are robust enough to stretch
as novice users become expert users. For example, when working with a
printer object, a typical user wants information about which objects are
in the printer's queue, as well as the orientation and number of copies
the printer will produce. This information should be readily available.
However, a more sophisticated user might want information about the
printer's connections, baud rate, and communication protocol. This
information should also be available, but it should not get in the way of
the information needed by a typical user.

By layering information, a designer can keep a product's interface free of
clutter and can avoid intimidating novice users while still meeting the
needs of expert users. Chapters 3 and 4 provide information about the
design principles and interface components that enable designers to create

products that serve users' needs.

29al1000.boo Page 2

1.2.5 Accommodating the Programmer's Model in the Designer's Model

Ideally, a designer should create a model appropriate for users, and a
programmer should write programming code that supports the designer's
entire model. However, a designer must sometimes make concessions to the
restrictions of a programming environment. For example, in a product that
offers an electronic mail feature, a designer might specify that a user
should receive some kind of immediate notification when mail reaches its
intended recipient. But if the network that the mail travels on is
subject to unpredictable delays, the designer might have to settle for a
notification that arrives as soon as the network allows, rather than an
immediate notification. The designer might also have to add a feature
that lets a user know where a piece of mail is while in route.

When accommodating a programmer's model in a designer's model, a designer
should be certain to shield users from complex details of a product's
implementation. As shown in Figure 7 in topic 1 3, there should be no

direct relationship between a programmer's model and a user's conceptual
model. Any aspect of a programmer's model that must be exposed to a user
must first be filtered through the designer's model. For example, a
typical user expects that the information displayed in a window is up to
date. The user's expectation should be reflected in the designer's model.
However, a programmer cannot always ensure that displayed information is
up to date; perhaps a network delay interferes. To bridge the gap between
a user's expectations and what a programmer can deliver, a designer's
model can include a way for a user to manually refresh the display of

information.

Just as an architect must know the strengths and weaknesses of building
materials and the skills of the builders contracted to construct a house,
a designer must be aware of the capabilities and limitations of the
programming environment, and the skills of the programmers who will
implement the design.

29al000.boo Page 1

1.3 Chapter 3. Goals and Design Principles of the CUA User Interface

The primary goal of the CUA user interface is to help a user to transfer
knowledge across products. If a user learns to use one product that has a
CUA interface, the user can quickly learn to use any other product that
has a CUA interface. Additional goals of the CUA user interface are to:

Increase a user's productivity

Increase a user's satisfaction with a product
- Reduce a user's error rate.

The CUA user interface achieves these goals by adhering to the design
principles discussed in this chapter. The design principles are based on
principles of human behavior, field experience, and results of usability
testing.

Occasionally a designer must choose between two design principles if both
pertain to a particular aspect of the user interface. Sometimes factors
outside a designer's control can lead a designer to favor one principle at
the expense of another. For example, cost, performance, and usability
concerns sometimes conflict. A designer must balance them according to
their effect on a user and a user's tasks. Above all, a designer must
keep a user in mind when creating a user interface.

The design principles are grouped according to these categories:

Placing a user in control of the user interface
Reducing a user's memory load

Making the user interface consistent.

If a designer conscientiously combines these design principles with
knowledge of a product's intended users and with usability testing, the
resulting product should be easy to learn and easy to use.

1.3.1 Design Principles That Place a User in Control

1.3.2 Design Principles That Reduce a User's Memory Load
1.3.3 Design Principles That Contribute to Consistency

29al000.boo Page 1

1.3.1 Design Principles That Place a User in Control

A user should always be able to communicate with a computer and should
never feel that the computer is in control. Whenever possible, a designer
should avoid program-driven sequences that prompt a user through fixed
steps and directive messages. Program-driven interaction is like riding a
train: a user must go where the program goes, according to its schedule.
A designer should aim for user-driven interaction, which is like driving a
car: a user goes where the user wants, according to the user's schedule.
A product should allow a user alternative courses of action and should not
limit a user's capabilities by imposing a designer's or programmer's
preconceived notions of the "correct" sequence for accomplishing a task.

In general, a designer should approach product design with a "no user
errors" philosophy. That is, a product should never make users feel that
they are in the wrong--rather, users should feel that any shortcomings are

in the product, not in themselves.

1.3.1.1 Using Modes Judiciously
1.3 2 Displaying Descriptive and Helpful Messages

.3.1.3 Providing Immediate Actions, Feedback, and Reversible Actions
1.3.1.4 Accommodating Users with Different Levels of Skill
1.3.1.5 Making the User Interface Transparent

1.3.1.6 Allowing a User to Customize the User Interface

29al000.boo Page 1

1.3.1.1 Using Modes Judiciously

A mode is a state of a product in which only certain actions are available
to a user. That is, modes restrict a user's options. However, modes can
be useful in some situations. For example, they can extend the
capabilities of input devices by allowing several actions to be
accomplished with the same technique, key, button, and so forth. Modes

can also help an expert user perform a series of actions very quickly.

A mode limits a product's response to a user's actions. For example, if a
user were typing a report using a product that has a typing mode and a
line-drawing mode, the user would have to leave the typing mode to draw
lines around a paragraph. Because typing would be an action unavailable
in the line-drawing mode, the user would have to switch modes again to

continue typing the report.

Modes can be useful in directing a user's interaction with a product.
However, designers have historically overused modes without regard for how
modes affect users. Users can feel powerless when a mode restricts their

actions.

One drawback of modes is that the same action can produce a different
result, or no result, in a different mode. For example, in a typical
typing mode, a letter appears when a user presses a character key. In a
line-drawing mode, perhaps only the cursor-movement keys have any effect;

pressing a character key might produce no result.

Another drawback to modes is that users tend to forget which mode they are
in unless a product clearly indicates the current mode. A user can be
puzzled when an action leads to an unintended result. For example,
pressing the right arrow key in a typing mode typically moves the cursor
to the right. 1In a line-drawing mode, perhaps the right arrow key extends
a horizontal line by some increment. If a user presses the right arrow
key intending to edit some text, and instead draws a longer line, the user

can be surprised, confused, or even exasperated.

To alleviate some of the problems associated with modes, a designer should
try to use only those modes that require an ongoing user action, such as
pressing a mouse button or a keyboard key, to maintain the mode. Also, a
designer should specify some kind of mode indicator. For example, a
pointer or cursor could have one visual representation when the user is in
a text-editing mode and another when the user is in a line-drawing mode.

Figure 13 shows examples of pointers used as mode indicators.

I-beam Cross-hair
pointer pointer

29al1000.boo Page 1

Figure 13. Mode Indicators. When a user is in text editing mode, for
example, the pointer can change to an I-beam pointer to
indicate the mode. When the user changes to line-drawing mode,
the pointer can change to a cross-hair pointer.

If a designer finds it necessary to use a mode for a particular part of a
product, the designer should keep the scope of the mode narrow and should
allow a user to continue to interact with other parts of the product while
the mode is in effect. For example, if a product requires more
information from a user and displays a message window to elicit the
information, the user should still be able to scroll the underlying window
and interact with other parts of the window not affected by the lack of
information. The user should also be able to interact with other objects.

In general, a designer should use modes with caution and should make them
obvious and easy to get out of.

29al000.boo Page 2

1.3.1.2 Displaying Descriptive and Helpful Messages

Chances are that at some point a user will interact with a product in a
way that the product's designer did not anticipate. When that happens,
the product should indicate to the user that it cannot interpret the
user's action. Typically a product would display some kind of message,
although in some situations an audible cue or a graphical cue would

suffice.

Because a situation in which a message is displayed is often a situation
in which a user needs the most support, messages should be clear and
concise and should provide mechanisms for user interaction. A message
should describe the situation objectively, without placing blame, and
should help a user correct the situation. For example, if a user inserts
a diskette that has not been formatted, and the user tries to save an
object to that diskette, the product should display a message that tells
the user that the diskette has not been formatted. The message should
include mechanisms that allow the user to format the diskette and save the
object without having to leave the message window. The message should
also include mechanisms that allow the user to take other courses of

action.__Figure 14 shows an example of an appropriate message.

The dizskette in drive &; has not been
formatted. An object cannot be zaved

ba an unfarmatted disk.,

R R e

PICTURE 14

Figure 14. Descriptive Message. The message describes the situation
without placing blame on the user, and the message provides a
way for the user to change the situation without leaving the

message window.

For additional information about messages, see "Messages" in
topic 1.4.7.1.

29al1000.boo Page 1

1.3.1.3 Providing Immediate Actions, Feedback, and Reversible Actions

The results of a user's actions should be obvious immediately. Immediate
feedback allows a user to assess whether the results were as expected. If
the results are not as expected, the user can choose an alternative action
right away. For example, when a user selects a choice to change the font
of some selected text, the appearance of the selected text should change
immediately. The user can then decide if the resulting effect is
desirable and can select another choice if it is not.

If the results of a user's actions cannot be made obvious immediately--for
example, if a network delay interferes--a product should still provide
some kind of feedback. For example, the product should indicate to the
user that the action is being processed. However, a designer should make
sure that a product's feedback does not interrupt a user's work.

The results of a user's actions should also be reversible. By providing
reversible actions, a designer allows a user to learn by exploring, to try
an action to see the result, and to undo the action if the result is not
what was expected or desired. For example, if a user types a word and
then decides a different word would be better, the user can press the
Backspace key to undo the original typing. Likewise, a user should be
able to redo any action that has been undone. A user feels more
comfortable with an interface in which an action does not cause

irreversible consequences.

If an action cannot be made reversible, a product should inform a user and
should give the user an opportunity to select some other action. A
product might display a message that tells what the outcome of a user's
action will be and that indicates alternative actions for the user to
select from. For example, if a user attempts to erase a diskette, the
product should display a message that tells the user that if the action
continues, the user will no longer be able to retrieve the information on
the diskette. The message should also indicate alternative actions that
the user can take, such as stopping the action or replacing the diskette
in question with another diskette.

A designer is responsible for determining which actions can be undone and
which cannot, but the designer should always keep users' needs in mind and
should err on the side of more reversible actions rather than fewer
reversible actions. A designer also determines how many actions in a
series of actions can be undone.

29al000.boo Page 1

1.3.1.4 Accommodating Users with Different Levels of Skill

Much of user interface design is focused on novice or casual users.
However, many products offer features for more expert users as well. When
designing a user interface, a designer should provide a way for a user to
proceed at a comfortable pace, learning as much as necessary to accomplish
the task at hand. A designer should also provide a way for a user to go
beyond the basic level of knowledge required for frequently used features.
A product should encourage exploration so that, as a user's expertise
increases, the user is able to discover and use the product's more
advanced features.

For example, a product might initially display simplified menus containing
only those choices that a novice or casual user would use. However, the
product could also contain a mechanism that allows experienced or expert
users to display complete menus of all of the product's choices.

A novice or casual user requires different kinds of support than those
required by a frequent or expert user. To accommodate a novice or casual
user, a designer should rely heavily on visual cues and should avoid
making a user type extensively or remember details. Another technique is
to provide abbreviated menus and simplified windows. To accommodate a
frequent or expert user, a designer can provide hidden mechanisms, such as
shortcut keys, and condensed sequences of steps. A designer can also
provide a way to remove some visual cues. For example, an expert user
should be able to turn off the display of certain kinds of information
that he or she does not require.

Users at any level of knowledge and experience can benefit from help
information that describes a product's objects, choices, and interaction
techniques, and offers a user assistance in completing a task. A novice
or casual user might require extensive help information about each
component of a product's interface, while a frequent or expert user might
require only a brief description.

In general, an interface should be flexible enough to accommodate a full

range of users, but a designer should make sure that the interface serves
the needs of the primary users.

29al000.boo Page 1

1.3.1.5 Making the User Interface Transparent

A user interface provides tools that help a user accomplish a task;
therefore, an interface should focus a user's attention on the task or end
product. Just as a chef is only incidentally interested in the tools of
the cooking trade--pots, pans, and ovens--and prefers to concentrate on
the finished meal, a user is only incidentally interested in the tools
provided by a user interface--menus, pointers, keyboards, icons, and
windows. A user prefers to concentrate on conveying ideas, calculating a
return on investment, or replenishing an inventory, for example, and a
designer should make sure that the tools provided by a user interface do
not get in the user's way. A good user interface requires little
conscious thought on a user's part.

29al000.boo Page 1

1.3.1.6 Allowing a User to Customize the User Interface

Because they have varying backgrounds, interests, motivations, and
experiences, no two users are exactly alike. To accommodate individual
differences, a designer should create a flexible interface that each user
can customize according to personal preference. A user should be able to
customize the volume and duration of sounds, the intensity and hue of
colors, the arrangement of choices in menus, the sequence of steps in a
process, and any other aspect of the user interface. A designer should
never underestimate a user's creativity or desire for imprinting personal
style on a computer.

A designer should also recognize that different users have different
physical characteristics and work in diverse environments. One user might
want to increase the volume of audible cues on a system to compensate for
hearing loss or for a noisy work environment. Another user might want to
enlarge the visual representations of the interface's components to
compensate for impaired vision or inadequate lighting. Allowing a user to
completely customize a user interface can lead to higher productivity and
higher user satisfaction. However, a designer should provide defaults
that are satisfactory to most users and that a user can revert to.

29al000.boo Page 1

1.3.2 Design Principles That Reduce a User's Memory Load

A user should never have to rely on memory for something a product can
"remember." Because people are better at recognition than at recall, a
product should present alternatives and let a user choose from among them.
For example, a product could provide lists of items, such as choices in a
menu. A user can recognize choices in a menu without having to recall

commands or their syntax.

Johnston

Figure 15. Recall versus Recognition. The window on the left offers few
cues to a user, who must remember a set of commands and syntax.
The window on the right presents a user with a menu, a list of

items that a user can recognize and point to.

A product should also provide reminders to help a user keep track of the
task at hand. For example, a product could provide visual cues, such as
highlighting or progress indicators, or textual cues, such as status
messages. Highlighting can remind a user that an object is selected, and
a progress indicator can remind a user that a process is under way.

Another way to avoid overloading a user's memory is to provide default
settings and to save previously selected settings. The window in which
the settings are saved can also remind a user about which settings are in
effect. For example, a user might want to change the colors that appear
on a screen. After experimenting with various colors, the user might
settle on a particular combination and save those settings. At a later
date, however, the user might decide to revert to the original colors. By
providing a default setting for screen colors, the product relieves the

user of the responsibility for remembering the original colors.

.3.2.1 Defining Meaningful and Concise Object Classes
1.3.2.2 Making Objects Concrete and Recognizable

f29al000.boo Page 1

1.3.2.1 Defining Meaningful and Concise Object Classes

In both the real world and in an object-oriented user interface, certain
objects are better suited to certain tasks. For example, a telephone
serves a person's needs for oral communication better than a typewriter
does, while a person would be hard pressed to write a report with a
telephone. When designing objects for an object-oriented user interface,
a designer should consider the tasks a user will want to accomplish and
then should ensure that the characteristics of the objects support the
user's tasks.

A designer should clearly define the properties of each object and should
establish a hierarchy of object classes based on these properties. The
objects should be designed so that a user can easily recognize members of
a class and can understand what distinguishes one class of objects from
another. The distinctions among classes should be meaningful to a user
and should not be based on underlying programming distinctions or
requirements. For example, a product might contain a chart object and a
parts catalog object. When a user works with a chart object, the user
develops a body of knowledge about that object and comes to expect that
other chart objects share certain characteristics and behave similarly.
Likewise, a user develops a different set of expectations about a parts
catalog object because it behaves differently from a chart object. From a
user's perspective, these two objects have different purposes--that is,
they belong to different object classes--even though they share some
behaviors, such as opening and closing. A user does not care, and does
not need to know, that to a programmer or a designer both objects are
members of the data object class.

An object hierarchy should be concise. So should the visual
representations of the objects in the hierarchy. Typically, each object
in a class of objects is represented by the same type of icon. The
individual objects are distinguished by different icon labels, which
indicate the name of each object. If a user interface is cluttered with
too many types of objects or too many types of icons, a user can become
overwhelmed. To keep a user focused on the right objects, a designer
should keep the number of object classes to a minimum while still allowing
a user to accomplish a task without undue effort. If a product seems to
require a new object class, a designer should first consider modifying an
existing class. Likewise, a designer should consider modifying existing
icons to represent new object classes. However, a designer should be sure
that the visual distinctions among icons are obvious enough for a user to
discern them readily. Reuse of an existing class allows a user to draw on
previous knowledge of the class and decreases learning time.

29al000.boo Page 1

1.3.2.2 Making Objects Concrete and Recognizable

When a computer object resembles a real-world object in appearance or
behavior, or both, a user can transfer knowledge about the real-world
object to the computer environment. By including familiar objects in a
product, a designer can help users learn to use the product more quickly.

The visible representation of computer objects should be easily
recognizable, and a computer object should resemble its real-world
counterpart when possible. For example, in a car dealership product, an
object that represents the general information about a car should resemble
the general information found on the car's window sticker.__ Figure 16
shows an example of a recognizable object.

Make Hutton

Modsl ProSport
Year 1991

Colar Arizona Red
VIN 19305 ECO00
PFiice $17.000
Buyers 1

Specifications
Engine type 1.8 liter, DOHC. 4 cylinder. 16 vakve
Horsepower (SAE net] 130 HP & G000 RPM
Torque [SAE net) 121 FT-LBS [16.8 KG-M] @ 5000 RPM
Induction system Programmed fuel injection
Transmission 8- speed manual
Suspension 4-wheel independent double-wishbone, front/rear coil springs

Figure 16. Concrete, Recognizable Objects. The car object's icon
resembles a real car, and the information in the window
resembles the information found on the sticker on a car window.

When an object represents a more abstract notion that does not have a

real-world counterpart, the representation of the object should still help

a user visualize and remember relationships.

f29al000.boo Page 1

1.3.3 Dessign Principles That Contribute to Consistency

Consistency helps a user transfer knowledge from one product to another
and helps a user predict how something new will work. To create a
consistent user interface, a designer should develop paradigms that
provide for identical implementation of common functions throughout a
product. For example, the CUA guidelines specify that a user should be
able to use the same technique for editing text, regardless of where the

text appears.

For any single design decision, a designer must consider whether being
consistent with respect to one component of an interface can affect the
consistency of other components. Some components of a user interface
might be consistent in shape, location, or color. Others might be
consistent in interaction techniques. A designer should make sure that
components are consistent in the ways that a user would expect.

A designer must also remember that consistency is a means to an end--ease
of learning and reduction of errors--rather than an end itself. Sometimes
it is impractical or impossible to be completely consistent. In that
case, a designer must make consistency compromises based on knowledge of a
user's conceptual model and should be consistent in whichever way seems

more natural to a user.

1.3.3.1 Sustaining the Context of a User's Task

.3.3.2 Maintaining Continuity within and among Products
1.3.3.3 Creating Aesthetic Appeal
1.3.3.4 Using Visual Metaphors

29al000.boo Page 1

1.3.3.1 Sustaining the Context of a User's Task

Users can become confused if everything in front of them changes
continuously, without apparent cause, while they work. To reassure a user
and give a user a sense of continuity, a product should provide cues that

help a user relate an effect to its cause.

A product should also maintain useful points of reference while a user
works on a task. For example, when a user adds objects to a folder, the
appearance of the folder's window should remain the same while the

appearance of the window's contents changes.

Azof 300 am. i : X containg

48 } 2 A
1991 Hutton 5 apphire 991 Hutton Sapphire

oma

1991 Watsan Luna

Figure 17. Sustaining the Context of a User's Task. The window on the
left shows that the container contains two objects. When a
user adds more objects to the container, the appearance of the
window remains the same while the appearance of the window's

contents changes.

Additionally, a user should be able to complete a step or a series of
related steps without having to alternate between input devices. For
example, a user should not have to use a pointing device to scroll text
while editing that text from the keyboard. The text should scroll
automatically when the cursor reaches the boundary of the area the user is
working in, and the keyboard should have its own scrolling mechanisms,
such as keys that move text up or down in the window, either a line at a

time or a screenful at a time.

Finally, a user should be able to predict the result of an action. Two
ways in which a designer can help a user predict a result are to provide
consistent responses to actions and to provide actions appropriate to a
user's tasks. A designer determines appropriate actions and responses by
using task analysis and by relying on metaphors when suitable metaphors
can be found. Also, by labeling actions with appropriate terms, a
designer helps a user develop expectations about the outcome of those

actions.

f29al000.boo Page 1

1.3.3.2 Maintaining Continuity within and among Products

A designer should not discount a user's experiences with other user
interfaces, such as those provided in prior versions of a product, or
those generally accepted as industry standards. Instead, a new product or
a new version of an existing product should build on a user's knowledge.
Therefore, a designer should be cautious in changing the behavior of an
object from one version of a product to the next. A designer must test a
new behavior to make sure that its benefits outweigh the drawbacks of
forcing a user to relearn the object's behavior. One way to accommodate
both new users and experienced users is to provide both the old and the
new behavior for an object and let the users choose which to use.

29al000.boo Page 1

1.3.3.3 Creating Aesthetic Appeal

The appearance of a product's interface can significantly affect a user's
attitude toward the interface. Inconsistent design and haphazard
placement of objects can confuse a user and can contribute to a user's
dissatisfaction with a product.

When designing the appearance of a user interface, a designer should
adhere to generally accepted practices for information presentation. By
skillfully using white space, color, proximity, overlap, size and shape
differences, and other components of visual communication, a designer can
make an interface more efficient and effective and can increase a user's
satisfaction with a product.

29al000.boo Page 1

1.3.3.4 Using Visual Metaphors

To draw on a user's existing conceptual model, a designer should include
elements that are familiar to a user. One way a designer can make an
interface seem familiar is to use metaphors. For example, a designer
could use a folder icon, which is a visual metaphor for a manila folder,
an object familiar to a user. The folder is also a metaphor for the
familiar concept of storage. In a computer environment, storage might be
accomplished differently from what a user is accustomed to, but the
metaphoric representations help a user draw on existing knowledge.
Metaphors also help set the stage for expanding a user's conceptual model
to accommodate the additional capabilities provided by the computer.

PICTURE 18

Figure 18. A Visual Metaphor for Storage. Because users have conceptual
knowledge of folders, when they see a folder icon, they can

understand that it represents storage.

f29al000.boo Page 1

1.4 Chapter 4. Key Components of the CUA User Interface

This chapter describes many of the key components of the CUA user
interface. A designer can use these components when developing a product
for a CUA environment. While many of these components appear in other
kinds of user interfaces, the following descriptions refer specifically to
the CUA implementation of these components.

.4.1 Workplace

1.4.2 Folders and Work Areas
.4.3 Icons

1.4.4 Pointers and Cursors

1.4.5 Windows

1.4.6 Interaction with Objects
.4.7 Keeping a User Informed
.4.8 Exception Handling

1.4.9 Help

29al000.boo Page 1

1.4.1 Workplace

The workplace is the container that holds all objects in the CUA

interface. It fills the entire screen and serves as a background for a

user's work. Any object that appears directly on the background of the

workplace is represented by an icon.

" Waarkplace
EI = lzans

A TN

PICTURE 19

Figure 19. Workplace. The workplace is the container that holds all other

objects. It fills the entire screen.

Page 1

292l000.boo

1.4.2 Folders and Work Areas

A folder is a general-purpose container in which a user can organize
objects in whatever way the user sees fit. A work area is a more
specialized type of container in which a user can organize objects
according to the task or tasks the user wants to perform. Both types of
containers can be provided by an operating system, and a product can
provide product-specific containers based on these two types of
containers. The visual representations of these containers can be
tailored to fit the tasks for which a product will be used.

PICTURE 2

Figure 20. Folder and Work Area. A folder is a general-purpose container,
and a work area is a container specialized for a user's tasks.

f29al000.boo Page 1

1.4.3 Icons

In the CUA interface, an icon is a small graphic image that represents an
object. Strictly speaking, an icon is simply one view of an object (see

"Views" in topic 1.4.5.1); however, to be consistent with a user's

conceptual model, a designer should design a product in a way that
encourages a user to think of an icon as the object itself.

An icon should convey information about its corresponding object, and its
appearance can change when something about its object changes. For
example, the icon for a printer can change to indicate that the printer
has run out of paper.

An icon doesn't have to be a static image. It can be an animated image or

even a video image. Figure 21 shows examples of icons.

PICTURE 21

Figure 21. Icons. Icons are graphic images that represent objects. They
can change to indicate a change in the objects they represent.
The icon on the left represents a printer. The icon on the

right indicates that the printer has run out of paper.

f29al000.boo Page 1

1.4.4 Pointers and Cursors

Pointers and cursors are visual cues that indicate where a user's next
interaction with the user interface will take place. They provide a way
for a user to select and interact with things that appear on the
workplace.

.4.4.1 The Pointer
1.4.4.2 The Cursor

29al000.boo Page 1

1.4.4.1 The Pointer

Typically only one pointer appears on the workplace at a time, and it is
associated with a user's pointing device, such as a mouse, trackball, or
joystick. When a user moves the pointing device, the pointer moves

correspondingly, and when a user presses a button on the pointing device,

the object that the pointer is on is affected.

The pointing device used most often in a CUA environment is a two-button
mouse. One of the two mouse buttons is called the selection button (see

"Selection" in topic 1.4.6.4). The other mouse button is called the

manipulation button, and it is used for direct manipulation (see
"Interaction with Objects" in topic 1.4.6). A user can choose either the

left or right mouse button for either function, selection or manipulation.
If a three-button mouse is used, the third button is called the menu
button.

The CUA pointer is usually shaped like an arrow. However, the shape of
the pointer can change to indicate what kinds of actions are possible.

For example, the pointer is shaped like an I-beam when it is over text
that can be edited or over an area into which text can be placed.

Products can provide product-specific pointers that serve the special
needs of their audiences. For example, a graphics product might provide a
special pointer to help a user draw lines accurately. However, before
providing a new pointer, a designer should first consider modifying an
existing pointer so that a user can transfer knowledge about the existing
pointer rather than having to learn about a new one.

Arrow pointer I-Beam pointer

PICTURE 22

Figure 22. Pointers. The pointer is usually shaped like an arrow, but it
changes to an I-beam when it is on text that can be edited or
on an area into which text can be placed. The pointer can
change to other shapes as well, depending on the mode the user

is in.

29al1000.boo Page 1

1.4.4.2 The Cursor

Typically only one cursor appears on the workplace at a time, and it is
associated with a user's keyboard. When a user presses a key, information
is transmitted to the operating system, and if appropriate, something

appears or occurs at the cursor's position.

The CUA cursors are the selection cursor and the text cursor. The
selection cursor is used to indicate which items a user can interact with
from the keyboard. For example, a selection cursor can indicate which
items can be selected or which items can display a pop-up menu (see

"Pop-up Menus" in topic 1.4.6.2). In some scopes of selection (see "Scope

of lection™ in topic 1.4.6.4.1) the selection cursor just indicates the

cursor's position. In other scopes of selection, the selection cursor

also automatically selects the item it is on.

Selection cursors

Figure 23. Selection Cursor. The selection cursor is typically a bar of
color, a box with a dotted outline, or an area that appears to

be pressed in relation to the surrounding window area.

The text cursor is used to type text. When a user is in insert mode--that
is, when characters a user types are added to the existing characters--the
text cursor appears as a vertical line. When a user is in replace
mode--that is, when characters a user types replace existing
characters--the text cursor can change in appearance. For example, the
cursor can become a vertical bar of color surrounding the character that
will be replaced.

Text cursor in insert mode Text cursor in replace mode

Figure 24. Text Cursors. The text cursor is a vertical line when a
product is in insert mode. It is a vertical bar of color when
a product is in replace mode.

1.4.4.2.1 Cursor Movement

.4.4.2.2 Mnemonics
.4.4.2.3 Shortcut Keys

f29al000.boo Page 1

1.4.4.2.1 Cursor Movement

A user can move the cursor by pressing a cursor movement key. Cursor
movement keys include the arrow keys (labeled <, _>, *, and V) and the
Home, End, Page Up, and Page Down keys. A user can also move the cursor
by pressing and releasing a button on a mouse or other pointing device.
When a user presses the selection button on a mouse, the cursor moves to
the position that the pointer was on.

29al000.boo Page 1

1.4.4.2.2 Mnemonics

A mnemonic is a readily recognized character that a user can type to move
the cursor quickly from one place in a window to another.

For example, if
the cursor is on the first choice in a menu,

a user can move the cursor
directly to the last choice in the menu by typing the mnemonic for that
choice. A mnemonic is typically indicated with an underline.

e

Mnemonics

Figure 25. Mnemonic. A mnemonic is a character that a user can type to

quickly move the cursor to the choice containing the mnemonic.
Each underlined character in the figure is a mnemonic.

f29al000.boo Page 1

1.4.4.2.3 Shortcut Keys

A shortcut key is a key or a combination of keys that a user can press to
select a choice from a menu. The menu need not be displayed. Shortcut
keys are provided for choices that a user will use frequently. Shortcut
keys provide a quicker method of interaction, particularly for experienced
users who are likely to prefer remembering the combinations to displaying
and navigating through a menu for each desired choice.

A shortcut key is typically displayed next to the choice it pertains to so
that a user can learn to associate the shortcut key with that choice. A
designer might want to provide a mechanism that allows users to turn off
the display of the shortcut keys.__Figure 26 illustrates some of the
standard CUA shortcut keys.

Shortcut keys

Figure 26. Shortcut Keys. A shortcut key is a key or combination of keys
that a user can press to select a choice from a menu. A user
can use a shortcut key even when the menu containing the
corresponding choice is not displayed.

f29al000.boo Page 1

1.4.5 Windows

A window is a part of the CUA interface through which a user can view an
object. A window is bounded by a window border, which separates the
window from other windows on the workplace. Within the border are

mechanisms that allow a user to manipulate the window and its contents.

small icon window title Window sizing
buttons

System
menu

Status

area
. Year Make tModel Price Buyers YIN ~
Selection Split box
cursor 2 1991 Watson__ Patriot $22000 3 34725FXEEI
57159 Hotton Sapphive (% 414,400 YT BT3EE T4
& 1991 Watson Faser GT. $19000 3 23544GG7832
Window S 1991 Watson MudTruck 322000 3 34225RX2322
— & 1991 Watton MudTruck $16900 2 9232RMJ2373)
border & 1991 Wheeler Pathiwinder $29100 2 2345AGG7EI2 Vertical
& 1991 Hutton ProSport $17.000 1 1990SECO001 scroll
Split box 2= 1991 Aubum SportGT g22000 1 7BIZEXETN34 bar

Information—{:;
area

- Scroll box Horizontal scroll bar Scroll button
PICTURE 27

Figure 27. A Typical Window and Its Components

Figure 27 shows a typical window and its components. The system menu
symbol, the window border, and the window sizing buttons allow a user to
change the size and position of a window. The menu bar and scroll bars
allow a user to work with the window's contents. The window title
indicates the name of the object seen in the window, and it also indicates

which kind of view (see "Views" in topic 1.4.5.1) is displayed. The

information area displays brief messages to a user about the object or
choice that the cursor is on. Information about the normal completion of
a process can also appear in the information area. For example, if a user
copies several objects from one container to another, the information area
in a container's window could display a brief message to tell the user
when the copying has been completed.

A window and its content--that is, the information below the menu bar and
above the horizontal scroll bar--are not permanently tied together. A
user can completely change the content of a window without opening a new
window. For example, a user can change the view (see "Views" in

topic 1.4.5.1) of the object displayed in the window. A user can also
control how much of a window's content is visible by changing the size of
the window or by splitting a window into separate portions called panes.
Each pane can display different parts of the same object and can be
scrolled independently.

f29al000.boo Page 1

Az of 10:00 a.m.
Year Make Model Price

1991 Walson Pabiot il $22.000 34225RK5637
1951 it Sappkire L || $14.400 B72IERET23T
1991 Watson Faser GT $19.000 2954AGEEI2
1991 Walson MudTruck || $22.000 34225R%2322

1991 Watson MudTruck $16,300 3832RMJ2373
1991 ‘wheeler Pathiwinder $29,100 23458AGGTEI2
1931 Hutton ProSport $17.000 19305ECO001

1991 Auburn SportGT $22.000 TR3ZEXET134

Panes

Figure 28. A Window Divided into Two Panes

The CUA interface provides two types of windows: primary windows and
secondary windows. A primary window appears when a user opens an object,
and it is where the main interaction between a user and an object takes
place. A secondary window appears when a user needs, or needs to provide,
information related to an object in a primary window. For example, a

secondary window might contain a message (see "Messages" in topic 1.4.7.1)

or help information (see_"Help" in topic 1.4.9), or it might contain

controls (see "Controls™ in topic 1.4.6) that help a user provide

additional information.

1.4.5.1 Views

f29al000.boo Page 2

1.4.5.1 Views

The content of a window is a view. A view is a way of looking at an
object's information. Different views display information in different
forms, which mimics the way information about an object is presented in
the real world. Consider, for example, a user's manual for a personal
computer system. A user's manual typically describes a computer system in
several different ways. It provides:

| A picture of the entire system with each piece correctly set up

J A picture of each piece of the system

3 A list of the pieces of the system, such as the display screen,
keyboard, pointing device, and printer

| A list of the features of the system, such as the processing speed and
memory capacity

nl Step-by-step directions for setting up the system and for using each
piece of the system.

Each of these ways of looking at or describing the computer system is a
view of the system.

The CUA interface also provides different kinds of views for objects in
the CUA environment. The appearance of a window's contents and the kinds
of interaction possible in a window are determined, in part, by the type
of view presented in the window. The four basic types of views are:

Composed view
Contents view
Settings view

Iy

Help view.

An object can have more than one view. In fact, most objects have several
types of views.

To determine which types of views an object should have, a designer needs
to consider which kinds of data an object contains. Some kinds of data
have linear (or string-like) characteristics. For example, text can be
thought of as a linear sequence of characters. An audio waveform is also
linear, and so is a musical score. Other kinds of data have tabular (or
array-like) characteristics. For example, a spreadsheet or text arranged
in columns and rows is tabular. Still other kinds of data have neither
linear nor tabular characteristics. Graphics and graphical components of
an interface can be placed in various relative positions and still have
meaning. They are said to have free-form characteristics.

A particular object can contain data that has one or more of these types
of characteristics, but each characteristic might be displayed best in a
different type of view. For each object, a designer should provide views
that allow a user to display and work easily with each type of data
contained in the object. When a user makes a change to the data displayed
in one view of an object, the change should be reflected immediately in
all other views of the same object (if the user has chosen to have the
other views refreshed automatically).

“iews

I | I |
Composed Contents Settings Help

29al000.boo Page 1

Figure 29. Views Available for Representing Objects in the CUA User
Interface. The CUA interface provides four basic types of
views plus two particular kinds of contents views. A product
can have a composed view or contents view tailored for that
product's users.

The four basic types of views are described in the following sections.
Designers should keep in mind that these four types of views represent
idealized views along a continuum of possible views. A designer can
create product-specific views that fall somewhere between these
categories. A designer should provide an appropriate name, based on the
users' conceptual model, for each view in a product.

1.4.5.1.1 Composed Views

1.4.5.1.2 Contents Views

1.4.5.1.3 Settings Views

1.4.5.1.4 Help Views

1.4.5.1.5 Distinguishing a Composed View from a Contents View

29al000.boo Page 2

1.4.5.1.1 Composed Views

A composed view presents the components of an object in relative order and
is appropriate when the relationships among the components contribute to
the overall meaning of the object. Data objects in particular are likely
to be displayed in a composed view. For example, a graph object or chart
object would typically be displayed in a composed view because the
arrangement of the components determines the meaning of the object as a
whole. If the arrangement of the components changes, the meaning of the

object changes.__Figure 30 shows an example of a composed view.

Jan — Mar 1991

Figure 30. A Composed View. A composed view of a data object arranges the
object's data in an order that conveys the data's meaning. If
the data were arranged differently in a composed view, the

object would have a different meaning.

f29al000.boo Page 1

1.4.5.1.2 Contents Views

A contents view lists the components of an object. The components can be
ordered or unordered in the view; the order of the information displayed
in a contents view does not affect the meaning of the object containing
the information. For example, the data on which a graph object or chart
object is based could be displayed as an alphabetic, numeric, or random
list in a contents view. The data is still the same, no matter the order
in which it is listed. Container objects in particular are likely to be
displayed in a contents view, although data objects and device objects can
also be displayed in a contents view.__Figure 31 illustrates a contents

view.

Figure 31. A Contents View. A contents view of a data object lists the

data contained in the object. The order of the data does not

affect the meaning of the object in a contents view.

The CUA interface provides for two standard kinds of contents views:

3 Icons view
a Details view.

A designer can provide other product-specific kinds of contents views,
depending on a user's needs. However, if a product includes objects that
contain other objects, the product should provide at least the two
standard kinds of contents views.

Icons View: An icons view displays each object as an icon and is
appropriate when a designer wants to give a user an easy way to change the
position of objects or to otherwise directly manipulate them (see

"Interaction with Objects" in topic 1.4.6). From a user's perspective, an

icon is the object itself. From a designer's perspective, an icon is a
composed view of an object. Note, however, that an icons view is a
contents view. Figure 32 shows an icons view of a folder object that
contains several documents.

f29al000.boo Page 1

-

lonia Owygen Living Quarters v
Temperature Consurmption Construction Rainfall

i
#
i
§
i
i
i
#
i
§

RS

Figure 32. An Icons View of an Opened Folder. This view of the contents

of a folder displays an icon for each contained object.

Reflections: An object usually is represented by only one icon. However,
for some tasks, a user might find it convenient to represent an object
with more than one icon. For example, a user might want a representation
of a printer object in more than one place so that the user could have
easy access to the printer from whichever folder or work area the user is
working in. A user can create an additional icon, known as a reflection,
to represent the same printer object.

Each reflection of a single object is related to the other reflections in
such a way that when a user changes an object by way of one reflection,
the change is reflected in all other reflections of the same object.
However, if a user deletes a reflection, other reflections of the same
object are not necessarily deleted. A user can choose to delete
individual reflections or can delete all reflections of an object at once,

at the user's discretion.

For related information, see "Icons" in topic 1.4.3.

Details View: A details view combines small icons with text that provides
additional information about objects. The type of information displayed
depends on the type of object and the type of tasks a user wants to
perform. The benefit of a details view is that the user doesn't have to
open an object to gain quick access to some of the object's more
frequently used information. Small icons are included in a details view

to provide a way for a user to directly manipulate each object.

MName hModified Created
[lonia Temperature 09:42 02/02/91 12:42 02/01/91

[Oxygen Consumption 08:30 02/04/91 1412 1Dfﬂ2,f9IJw
[Living Quarters Construction 09:00 0210491 12:45 09/16/90 i
[Annual Rainfall 09:18 02/02/81 21:18 0118/91)

.

Figure 33. A Details View. This view of the contents of a folder displays

f29al000.boo Page 2

detailed information about each object in the folder. The
details include the date the contained objects were created and

the date they were last modified.

f29al000.boo Page 3

1.4.5.1.3 Settings Views

A settings view displays information about the characteristics,
attributes, or properties of an object, and it provides a way for a user
to change the settings of some characteristics or properties. Not all
settings can be changed, however. For example, a user cannot change an
object's creation date even though the date might be displayed in a

settings view of the object.

A settings view typically is provided for each type of object. 1In a
settings view for a data object such as a document, a user could change
the font, type size, color, or whatever other settings are appropriate for
the document. In a settings view for a device object such as a printer, a
user could change the number of copies, the page orientation, the output

destination, or whatever other settings are appropriate for the printer.

Settings views can be applied more broadly as well. For example, certain
kinds of information about an object can be thought of as settings. An
address book object might contain objects representing the people that a
user writes to, and the settings for each of these objects might consist
of the person's name and address. Figure 34 shows an example of a
settings view.

MName

Created 03/27/91 155231
Last modified 03/27/91 160113

Create on drag

.

whark area

[prearance

Figure 34. A Settings View. This settings view of a folder object
displays the object's current settings and provides mechanisms

that allow a user to change the settings.

f29al000.boo Page 1

1.4.5.1.4 Help Views

A help view provides information that can assist a user in working with an
object. The type of information displayed in a help view depends on the
type of help a user requests. For example, a user can request help for an
entire window or for just part of one.__Figure 35 shows an example of help
for the Work area choice in the My Folder - Settings window.

Created 03/27/31 15:52:31
Lastmodified 03/27/31 160113

Create on drag

Selectthe Work area choice to change the
behawior of this container when you close it.

ltthe Work area choice is selected, then when you
close or minimize awindow showing this container,
all windows open from it will be hidden.

Figure 35. A Help View

For more details about the kind of help information that appears in a help
view, see "Help" in topic 1.4.9.

f29al000.boo Page 1

1.4.5.1.5 Distinguishing a Composed View from a Contents View

From a designer's perspective, the distinction between a composed view and
a contents view can be somewhat blurred, depending on the object being
viewed. For example, a product might provide a kind of view that lists
the sections of a document, much as an outline does. Lists of an object's
components are characteristic of a contents view. However, the product's
view might list the sections of the document in a meaningful order, which
is characteristic of a composed view.

Designers should not be overly concerned about which category a particular
view falls into. Instead, designers should create views that convey
information in a form that is meaningful to users, regardless of where the
views fall in the continuum of view types. The names that designers
choose for the views should describe the information displayed and should
be easily understood by users. For example, a product could provide a
"Formatted Text" view or a "Page Layout" view as the composed view of a
document. The product could also provide an "Outline" view as either a

composed view or a contents view of a document.

29al000.boo Page 1

1.4.6 Interaction with Objects

Natural languages typically have many more nouns than verbs, and a
graphical user interface typically contains more objects than actions.
Just as the same verb can be applied to many nouns, the same action can be
applied to many objects. The object-action paradigm is a pattern for
interaction in which a user first selects an object, then selects an
action. When a user selects an object first, the system can then present
a list of actions that can be applied to that object; the user does not
have to remember which actions are available. The object-action paradigm
is really a continuum, with direct manipulation at one end and indirect
manipulation at the other.

OhjectAction Continuurm

Direct . L Indirect
manipulation 4 ? manipulation

Drag and drop Pop-up menus Menu bars

Figure 36. The Object-Action Continuum. At one end of the continuum is
direct manipulation, in which an object and an action are
closely bound. At the other end is indirect manipulation, in
which a user selects an object, then selects an action.
Between the two extremes are other manipulation techniques,
such as drag and drop, pop-up menus, and menu bars.

Direct manipulation is interaction with an object by way of a pointing
device. This interaction technique closely resembles the way a user
interacts with objects in the real world. For example, using direct
manipulation a user can "pick up" an object and put it into a folder.
During direct manipulation, an object and an action are bound together

closely.

Indirect manipulation is interaction with an object through choices and
controls (see "Controls" in topic 1.4.6.3.2). Indirect manipulation can

be accomplished with either a pointing device or a keyboard. During
indirect manipulation, an object and an action are separated. A user
selects an object first, then the interface immediately tailors and
presents a list of appropriate actions, which are displayed as choices
that the user can apply to that object. The product, rather than the
user, stores the information that tells a user which actions can be
applied to the selected object. Users who interact with a computer by
using a keyboard exclusively can use indirect manipulation to obtain
results equivalent to those available through the use of direct
manipulation.

Other manipulation techniques can fall between the two extremes. For
example, using a pop-up menu (see "Pop-up Menus" in topic 1.4.6.2) is more

direct than using other kinds of menus, but it is less direct than

dragging an object.

The following sections provide details about techniques and components
used for interaction with objects.

1.4.6.1 Drag and Drop

1.4.6.2 Pop-up Menus

1.4.6.3 Choices and Controls
1.4.6.4 Selection

1.4.6.5 Copying and Creating Objects

29al000.boo Page 1

1.4.6.1 Drag and Drop

Drag and drop is an interaction technique that falls at the direct
manipulation end of the object-action continuum. It is called drag and
drop because it involves moving an object from one place (dragging) and
leaving it at another (dropping). For example, to change a value
represented by a bar on a bar chart, a user could drag the end of a bar
until the bar represented an appropriate new value. The user would then

drop the end of the bar in the new location to complete the direct

manipulation.

Figure 37. Direct Manipulation in a Bar Chart View of a Document Object.
By dragging a bar, a user can change the value the bar

represents.

Drag and drop often involves a source object and a target object. A
source object is usually the object a user is working with, and a target
object is usually an object that a user is transferring information to.
For example, if a user drags a spreadsheet object to a printer object so
that the spreadsheet will be printed, the spreadsheet is the source object
and the printer is the target object.

The result of drag and drop can change depending on what the source object
is and what the target object is. For example, if a user drags a
spreadsheet object from one folder object and drops it onto another, the
spreadsheet is moved to the target folder. However, if a user drops the
same spreadsheet onto a printer object instead of a folder, the operating
environment makes a copy of the spreadsheet and puts the copy into the
printer's queue to be printed. The original spreadsheet is returned to
its original location.__Figure 38 illustrates printing a document by
direct manipulation.

f29al000.boo Page 1

lonia Oxpgen Living Quarters
Temperature Consumption Construction

Figure 38. Printing by Direct Manipulation. A user can drag a document

object to a printer object to print the document.

The CUA guidelines specify default results for drag and drop actions. The
defaults are based on the types of objects (container, data, or device)

being manipulated and on the following principles:
3 When possible, the result of dragging and dropping an object should be
the result that a user would expect, given the source object and

target object being manipulated.

J The result of direct manipulation should be comparatively "safe"--that
is, a user should not lose information unexpectedly.

3 A user should be able to override a default result to obtain a

different result.

f29al000.boo Page 2

1.4.6.2 Pop-up Menus

A second technique for interacting with objects involves the use of pop-up
menus, which contain only those choices that pertain to an object at the
time the menu is displayed. The menus are called pop-up menus because
they appear to "pop up" next to an object when a user presses the
appropriate key or mouse button. A pop-up menu is available for each
object in an interface. Pop-up menus fall between drag and drop and menu
bars in the object-action continuum. Access to an object's actions by way
of a pop-up menu is more direct than access by way of other types of menus

"

(see_"Menus:" in topic 1.4.6.3.2) because a user does not have to select a

choice from a menu bar first. However, pop-up menus are less direct than
drag and drop.

The content of a pop-up menu is based on an object's context, which
includes the object's container, the object's contents, and the object's
state. Variations in an object's context lead to variations in an

object's pop-up menu.

When a user displays a pop-up menu for a group of objects, the menu
contains only those choices that can be applied to all objects in the

group.

Pop-up menus are particularly useful for objects that incorporate other
objects of different types, each requiring a different set of menu
choices. For example, in a page layout product that contains text
objects, scanned-image objects, and chart objects, a user could see a
different pop-up menu for each type of object.

il alte cormm mu constued wip ex
- notres et lebo incuen ni comodo
un nom. Yermnami quir eos

Eroat colust eut et labore
notsius dimu temporal emit
ctu minumal velcao et temp

mic nom. Yemnami disr et.
mu nami quir eog mun nom.
u ternporal Tebo incuen ni
quir ens notres et lebo et
ramat colust eut et eos mun nom.

Pop-up menu

Figure 39. Pop-up Menu. A pop-up menu contains choices that can be
applied to an object at the time that the menu is displayed.

Different objects have different pop-up menus.

f29al000.boo Page 1

1.4.6.3 Choices and Controls

During indirect manipulation, a user interacts with an object by first
selecting the object, then selecting a choice that performs the actual
manipulation. The primary interface mechanisms for indirect manipulation

are:

- Choices
— Controls.

Each of these interface components is discussed in more detail in the

following sections.

1.4.6.3.1 Choices
1.4.6.3.2 Controls

29al000.boo Page 1

1.4.6.3.1 Choices

A choice is text or a graphic that a user can select to modify or
manipulate an object. Graphical user interfaces, including the CUA

interface, are full of choices.

In the CUA environment there are three types of choices:

3 Action choices
| Routing choices
3 Settings choices.

Action Choices: An action choice immediately performs some task. For
example, a choice labeled Print prints an object as soon as the user

selects the choice.

Print choice

Figure 40. Action Choice. The Print choice is an action choice. TWhen a
user selects the choice, an object is immediately printed on a

user's printer.

Routing Choices: A routing choice displays a menu or a window from which
a user can select additional choices or specify additional information
about the task the user is performing. Except when a routing choice

"

appears on a menu bar (see "Menu Bar in topic 1.4.6), the name of a

routing choice is followed by a rightward-pointing arrow or an ellipsis
(...). The arrow indicates that the choice displays a menu, and the
ellipsis indicates that the choice displays a window. For example, a
choice labeled Refresh > displays a menu containing choices such as On and
Off, which modify the Refresh > choice. A choice labeled Sort...

displays a window from which a user can specify the order in which items
should be sorted. Figure 41 shows examples of routing choices.

f29al000.boo Page 1

Second Thid

3

" Drder 2 i Order3 4 Ascending
Descending i Descending

Figure 41. Routing Choices. When a user selects a routing choice, a
window or another menu appears. The View choice on the menu
bar is a routing choice. When a user selects it, a pull-down
menu appears. The Sort... choice in the View menu is also a
routing choice. When a user selects it, the pull-down menu

disappears and a secondary window appears.

Settings Choices: A settings choice allows a user to display or change
the characteristics or properties of an object. A settings choice can
also be an action choice if the change in a setting occurs as soon as a
user selects the settings choice. For example, a choice labeled Blue

would allow a user to display or change the color of an object to blue.
If the object's color changes as soon as a user selects the choice, the

Blue choice is both a settings choice and an action choice.

Settings
choices

Figure 42. Settings Choice. A user selects a settings choice to display
or change the characteristics of an object.

29al1000.boo Page 2

1.4.6.3.2 Controls

The CUA interface provides standard mechanisms for indirect manipulation.
These mechanisms are called controls, and they are used to display or
obtain certain kinds of information. Various controls can be combined in

a view to provide a user a way to modify an object.

Menus: A menu is a mechanism for presenting lists of choices to a user.
Menus are a staple of most commercially available graphical user

interfaces today. The CUA interface includes four types of menus:

l Menu bars
a Pull-down menus
3 Cascaded menus
3 Pop-up menus.
.
Menu bar Pull-down Cascaded Pop-up
menu menu menu

PICTURE 43

Figure 43. Menus. The CUA interface includes menu bars, pull-down menus,

cascaded menus, and pop-up menus.

Each type of menu is used for a certain purpose or in a certain kind of
situation. Menu bars, pull-down menus, and cascaded menus are described
in the following sections. However, because pop-up menus are used for
direct manipulation rather than indirect manipulation, they are described

at_"Pop-up Menus" in topic 1.4.6

Menu Bars: A menu bar appears across the top of most windows, just below
the window title. It is a horizontal list of routing choices. When a
user selects a choice from a menu bar, an associated pull-down menu is

displayed.

The name of each routing choice on a menu bar indicates what kinds of
choices appear in the associated pull-down menu. By naming the routing

choices descriptively, a designer encourages a user to learn by exploring.

Pull-Down Menus: A pull-down menu is displayed when a user selects a
choice from a menu bar. Pull-down menus contain choices that are related
to one another in some manner. For example, all choices in a pull-down
menu could apply to:

l An entire object (the object displayed in a window)
3 A selected object (within a window)

f29al000.boo Page 1

a Help information
7 A view of an object.

Cascaded Menus: A cascaded menu is displayed beside a pull-down menu or a
pop-up menu when a user selects a routing choice labeled with the >
symbol. A cascaded menu contains choices that modify or are related to
the routing choice. Cascaded menus provide a way for a designer to layer
choices so that a user can have access to a wide range of function without
being confused by lengthy lists of choices.

Entry Fields: An entry field is an area into which a user can type or
place text. Its boundaries are usually indicated. An entry field is
appropriate for situations in which the entire possible set of values
cannot be predicted. For example, if a product required a user's
identification number, a designer typically would specify an entry field
as the mechanism for eliciting that information, because the designer has

no way to predict the numbers of all possible users.

Identification number

rndddyyny

Read-only

field Entry

fields

Financial

Figure 44. Entry Field. An entry field is an area into which a user can

type information.

A variation of an entry field is a read-only field. A read-only field
contains information that cannot be directly altered by a user. For
example, a user cannot alter a read-only field by typing new information
over the existing information in the field. However, if the value in a
read-only field is calculated automatically according to the values in
entry fields, a user could change the value in the read-only field by
changing the values in the associated entry fields. For example, an Age
field might be a read-only field containing a value calculated from an
entry field that contains a birthdate. Although a user cannot change the
value in the Age field by directly typing into the field, the user can
change the value by changing the value in the Date of Birth entry field.

List Box: A list box usually consists of a read-only field and a scroll
bar. It is used to display a fixed or variable list of objects or a fixed
or variable list of settings choices. Because the display area can be
scrolled, the list can contain more items than can be displayed at one
time in the display area. The items in the list can be text or graphics,

and a user typically can select an item from a list box.

f29al000.boo Page 2

.

Figure 45. List Box. A list box displays text or graphics.

Combination Box: A combination box combines an entry field with a list
box. A user can type information into the entry field or can fill the
entry field by selecting one of the items from the list. A combination
box is appropriate when a designer can predict possible values for the
entry field and wants to serve the needs of both novice and experienced
users. The list box portion of the control prompts novice users to select
an appropriate value, while the entry field portion provides a quicker
means of interaction for experienced users and allows users to type values

not contained in the list.

s o o
WAl vt dolde

b "
3 et

PICTURE 46

Figure 46. Combination Box. A combination box combines an entry field

with a list box.

Drop-Down List: If a situation calls for a list box, but a list box would
crowd the window in which it is displayed, a designer can specify a
drop-down list instead. A drop-down list is a variation of a list box in
which only one item in the list is displayed until a user takes an action

to display the rest of the list.

29al1000.boo Page 3

..

o

Figure 47. Drop-Down List. A drop-down list displays only one item in the
list until a user takes an action to display the rest of the
list.

Drop-Down Combination Box: If a situation calls for a combination box,

but a combination box would crowd the window in which it is displayed, a
designer can specify a drop-down combination box instead. A drop-down
combination box is a variation of a combination box in which only the
entry field portion is displayed until a user takes an action to display
the list box portion of the control. When a user selects an item from the

list, that item appears in the entry field.

i
i g

PICTURE 48

Figure 48. Drop-Down Combination Box. A drop-down combination box
displays only an entry field until a user takes an action to

display the list box portion of the control.

Spin Button: A spin button allows a user to choose a value from a finite

set of related but mutually exclusive values that have a natural sequence.
For example, a spin button would be appropriate for displaying the days of
the week or the months of the year. A spin button is also appropriate for

displaying choices that increase or decrease in constant units.

The values in a spin button are displayed as if they were arranged in a
ring. When a user presses the up arrow ("), the value displayed
increases. When a user presses the down arrow (V), the value displayed

decreases.

29al1000.boo Page 4

Spin button

PICTURE 49

Figure 49. Spin Button. A spin button displays related but mutually
exclusive choices that have a natural sequence or that increase
or decrease in constant units. When a user presses the up
arrow ("), the value displayed increases. When a user presses

the down arrow (V), the value displayed decreases.

Push Button: A push button can be used to display an action choice or a
routing choice. When a user selects a push button, the action or routing
represented is carried out immediately. A push button is appropriate when
a designer wants to give a user convenient access to a frequently used

choice.

PICTURE 50

Figure 50. Push Button

A designer can replace the standard push button visual (shown in
Figure 50) with a product-specific visual if it clearly conveys the action
that the push button represents. For example, push buttons for a video

recorder object might resemble the buttons on a real video recorder.

29al1000.boo Page 5

Figure 51. Modified Push Button Visuals. The appearance of the push
buttons in this multimedia control panel has been modified so
that the push buttons resemble the buttons on a real control

panel.

The window sizing buttons that are part of a typical window are also

examples of push buttons with a modified appearance.

Radio Button: A radio button is so named because it operates like the
buttons that used to be found on car radios: only one radio button can be
selected at a time, and when a user selects a radio button, any previously

selected radio button is inactivated.

Radio buttons are used to display mutually exclusive choices in situations
in which a user must select a choice. Thus, a field of radio buttons
always contains at least two radio buttons. Radio buttons prevent a user
from selecting incompatible choices. For example, a product might contain
the choices On and Off in a single context. Because it would not make
sense for an object to be both on and off at the same time, a designer
should specify radio buttons to display the mutually exclusive On and Off
choices. Likewise, if a field of radio buttons pertained to a car's
transmission, it would not make sense for a user to be able to select both
an automatic transmission and a manual transmission for the same car. The
radio buttons help prevent a user from making an error.

Radio button

Figure 52. Radio Buttons. Radio buttons can be used to display mutually

exclusive textual choices.

29al1000.boo Page 6

Value Set: Like radio buttons, a value set is used to present mutually
exclusive choices. However, a value set is used primarily for graphical
choices, and the choices are arranged in a matrix. Value sets are useful

for creating palettes of tools.

Yalue set

PICTURE 53

Figure 53. Value Set. A value set is a matrix of mutually exclusive

choices. It is used primarily to display graphical choices.

Check Box: A check box is used to display a settings choice in a group
of settings choices that are not mutually exclusive. Check boxes are
appropriate for choices that have two clearly discernible states. For
example, a check box would be appropriate for a choice that locked an
object, because a user would easily understand that selecting the check
box locks the object, and not selecting the check box leaves the object
unlocked.

A field of check boxes can contain one or more choices, and a user can

select one or more check boxes, or not select any.

Check box

PICTURE 54

Figure 54. Check Boxes. Check boxes provide a way to display choices that
are not mutually exclusive. For example, a car could have both
air conditioning and power brakes. Each check box choice has
two states, such as on or off. Users can easily understand
that checking the air conditioning choice means that air
conditioning is desired (on), while not checking automatic

power antenna means that the antenna is not desired (off).

29al1000.boo Page 7

Slider: A slider is an analog representation of a value. When a slider
is used to display a particular value amid a range of possible values, the
slider typically shows a scale marked with equal units of value. For
example, a designer might use a slider to indicate the volume level of an
audio signal. The slider could indicate decibels.

Slider arm Slider buttons

Slider

PICTURE 55

Figure 55. Slider. A slider can be used to display or manipulate specific

values.

When a slider is used to display relative values with no corresponding
quantitative value, the slider doesn't necessarily show a scale, but it
does indicate what the relative extremes of the scale are. For example, a
designer might use a slider to indicate an approximate temperature amid a
range of acceptable temperatures. One end of the range could be labeled
Low and the other end labeled High.

PICTURE 56

Figure 56. Slider. A slider can also be used to display or manipulate

relative values.

Some sliders cannot be manipulated. For example, a read-only slider can
be used as a progress indicator, but a user cannot alter the value
represented by the slider.

29al1000.boo Page 8

Figure 57. Read-Only Slider. A read-only slider can be used to display a
value that a user cannot change directly. For example, a

read-only slider can be used as a progress indicator.

Notebook: A notebook is used to display any kind of data that can be
arranged in distinct groups that a user would find useful. Settings
choices are typically displayed in a notebook because a notebook provides
a convenient way for a user to change many settings at once. For example,
a designer might place all of the settings for a document object into a
notebook. Likewise, all of the settings for a printer object could be

displayed in a notebook.

Objects and other kinds of choices can also be displayed in a notebook.
For example, a product could provide a notebook to display a collection of
graphic objects, such as clip art.

T elephone

Herme

Financial

Figure 58. Notebook. A notebook is used to display objects or choices
that can be arranged in logical groups that a user would find
useful.

29al1000.boo Page 9

1.4.6.4 Selection

Through the process of selection, users indicate which items they want to
work with. Users can select items by using a pointing device (typically a
mouse) or keyboard. To select an item, a user moves the pointer or cursor
to the item to be selected and then presses the appropriate mouse button
or keyboard key. Most selection techniques that make use of a keyboard
parallel those that make use of a mouse, although there are some
exceptions.

During explicit selection users specifically indicate each item they want
to work with. For example, users can move the pointer or selection cursor
to each item. When a user explicitly selects an item, the item is
highlighted with some kind of visible cue. When a user removes selection
from an item, the visible cue is removed as well. The process of removing
selection is called deselection. Because an item remains selected until a
user deselects it, a user can apply more than one action to a selected
item without having to select the item again before each action. A user
can explicitly select more than one object at a time.

During implicit selection a user can gain access to an item's actions
without explicitly selecting the item. For example, a user can display an
object's pop-up menu by placing the pointer on the object and pressing the
appropriate mouse button. The object is not selected, but its actions are
available. Likewise, a user can move the cursor to an item and can get

help information (see "Help" in topic 1.4.9) about the item without
explicitly selecting the item.

An implicitly selected item is not highlighted with a visible cue, and a
user can implicitly select only one item at a time.

When a user selects an object, the object is not altered in any way,
except that the object can become visibly highlighted to indicate that it
is selected. A user can select and deselect an object any number of times
without otherwise affecting the object. However, when a user selects an
action, the action immediately affects whatever object or objects the user
has selected. For example, if a user selects an action that updates an
object's information, the information is changed immediately.

1.4.6.4.1 Scope of Selection
1.4.6.4.2 One-Based Selection and Zero-Based Selection
1.4.6.4.3 Types of Selection
1.4.6.4.4 Selection Techniques
.4.6.4.5 Design Considerations for Selection

29al000.boo Page 1

1.4.6.4.1 Scope of Selection

A scope of selection is an area within which a user can select items. For
example, one scope of selection might consist of an individual control,
such as a list box, while another might consist of a field of controls.
Each window is also a separate scope of selection.

If a user selects something in a particular scope of selection, a
previously selected item in that same scope can be affected, while items
selected in other scopes of selection remain unaffected. For example, if
a user selects an item in a secondary window, a previously selected item
in that window can become deselected, while an item selected in a related
primary window remains selected.

29al000.boo Page 1

1.4.6.4.2 One-Based Selection and Zero-Based Selection

When a scope of selection requires that at least one item within the scope
always be selected, that scope is said to have one-based selection. For
example, if a list box contains the names of colors that can be applied to
an interface component, a designer can make the list box a one-based scope
of selection to ensure that a user selects a color.

R

PICTURE 59

Figure 59. An Example of One-Based Selection. One-based selection means
that at least one item must be selected. For example, in a
list box containing colors that can be applied to an interface

component, one color must be selected at all times.

When a scope of selection does not require that an item within the scope
be selected, that scope is said to have zero-based selection. For
example, a container object, such as a folder, can be zero-based if a
user's task does not require that a contained object be selected at all

times.
530 matches; 530 in stock
1991 Hutton Sapphire 1931 Hutton GT - 19391 Watson Presidential
PICTURE 6

Figure 60. An Example of Zero-Based Selection. Zero-based selection means
that an item does not necessarily have to be selected. For

example, in this contents view of a container, no object is

29al1000.boo Page 1

1.4.6.4.3 Types of Selection

CUA guidelines specify three types of selection:

a Single selection, which allows a user to select only one item at a

time in a given scope of selection

a Multiple selection, which allows a user to select one or more items at
a time in a given scope of selection

3 Extended selection, which allows a user to select one item and then
easily extend the selection to other items in the same scope of
selection.

Each scope of selection uses one of the three types of selection. A
designer decides which type to use by considering which result--only one
item selected, more than one item selected, or usually one item but
sometimes more than one item selected--a typical user will want during
selection. The type of selection used is not affected by whether the
scope of selection is zero-based or one-based.

Single Selection: Single selection is the process of selecting only one
item at a time. When a user selects an item during single selection, any
previously selected item in the same scope of selection becomes
deselected. Single selection is appropriate for scopes of selection in
which the items displayed are mutually exclusive or in which a user

typically wants to select only one item.

PICTURE 61

Figure 61. An Example of Single Selection. This list box has been defined
as a single-selection scope of selection. When a user selects
an item in the list box, any item that was previously selected
becomes deselected.

Multiple Selection: Multiple selection is the process of selecting more
than one item in a scope of selection. When a user selects an item during
multiple selection, any previously selected items in the same scope of
selection remain selected. Multiple selection is appropriate for scopes
of selection in which items are not mutually exclusive in the context of a
user's task.

29al1000.boo Page 1

Figure 62. An Example of Multiple Selection. This list box has been
defined as a multiple-selection scope of selection. When a
user selects an item or items in the list box, any previously

selected item or items remain selected.

Extended Selection: Extended selection is the process of selecting one
item and then extending the selection to additional items. Extended
selection is appropriate for scopes of selection in which a user typically
wants to select only one item but occasionally wants to select more than

one item.

To use extended selection in a scope in which single selection is the
default, a user first selects one item. Then, to select additional items,
the user explicitly indicates that the selection of the first item is to
be extended to include the additional items. For example, a user might
select an item then press a designated key on the keyboard, alone or in
combination with a mouse button. When the user selects another item, the
first item remains selected because the user has explicitly indicated (by
pressing the designated key or button) that the initial selection is to be

extended.

Extended selection accommodates the needs of inexperienced users, who tend
to select only one item at a time, and it also accommodates the needs of

experienced users, who tend to recognize that in some situations selecting
more than one item is a more efficient way to work. Containers typically
make use of extended selection.__Figure 63 illustrates extended selection.

arme

Oxygen Cunsumptlun UB U 2/04/91 14'\2 10/02/9
i) Living Quarters Construction 09:00 0210791 12:45 09/16/9
[Annual Rainfall 09:18 UE,’UEN‘I 21:18 01/18/9

Name Modiﬁed Created

Oxygen Consum tion DB 30 DZ,’D‘I/EH 141

Gt 7 i Extended
BW selection

Figure 63. Extended Selection. In the top window, a user has selected one
object. In the bottom window, the user has extended the

selection of the first object to include additional objects.

29al1000.boo Page 2

Various scopes of selection use various types of selection.__Figure 64

shows which types of selection can be used with windows and controls.

Figure 64. Types of Selection Used in Various Scopes of Selection

Type of Selection

Scope of Selection Single Selection Multiple Selection

Extended Selection

|

|

| |

| |

| | | |
| | | |
| Window | [} | O | C
Menu	I	
List Box I ul	o	
Combination Box]	
Drop-Down List	[}	
Drop-Down Combination Box	O	
Spin Button	[l	
Push Button	[}	
Field of Radio Buttons	u	
Value Set	0	
Individual Check Box	O	
Field of Check Boxes		O

f29al000.boo Page 3

1.4.6.4.4 Selection Techniques

In a CUA environment a user can select items in two ways. A user can:

1 Select an individual item
nl Select a beginning point and an endpoint, between which all items are
selected.

The selection techniques for selecting an individual item are:

1 Point selection
J Random-point selection.

The selection technique for selecting items between two points is called

point-to-endpoint selection.

To determine which selection techniques are most useful to a user for a
particular task, a designer should consider the type of data being

selected and the form in which it is displayed.

Point Selection: During point selection, a user places the pointer or
cursor on an individual item and selects it. Point selection can be used
for single selection, multiple selection, or extended selection.

Automatic selection is a variation of point selection in which the steps
of indicating an item and selecting the item are combined for keyboard

users.

iR

&SDfHZUDaJﬂ

Johnston

Figure 65. Automatic Selection. Automatic selection is a variation of
point selection in which a keyboard user indicates and selects
an item in one step.

Random-Point Selection: During random-point selection, a user places the

pointer or cursor on an item and selects it. The user then moves the
pointer or cursor to another item and selects it. The items do not have
to be next to one another, and the user can select the items in any order.
Each item becomes selected in succession. Random-point selection can be

used for multiple or extended selection.

Point-to-Endpoint Selection: During point-to-endpoint selection, a user

f29al000.boo Page 1

places the pointer or cursor at a beginning point,
or cursor to an endpoint.

then moves the pointer
Each item between the beginning point and
endpoint becomes selected. Point-to-endpoint selection can be used for
multiple or extended selection.

29al000.boo Page 2

1.4.6.4.5 Design Considerations for Selection

When deciding how selection should work in a product, a designer must make

a series of decisions. The decisions are shown in Eigure 66.

Howman:

can be
Atmost Usually Usually
selected
one onlyone 2 more than
one

Single Selection

Frovide
Point Selectior

|E>4mdad Selection] l Multiple Selection |

Provide
Point Selectio

Provide
Point Selectior

Provide Provide Random
Range Selection Paint Selection

Provide Area. Donot provide
Selection Area Selection

Figure 66. Decisions for Selection. A designer must first consider a
user's objects and tasks to determine how many objects the user
should be allowed to select at one time within a scope of
selection. Next a designer must consider the minimum number of
items that must be selected. Then, by evaluating the type of
data being presented, the form in which it is presented, and
the types of tasks the user will be trying to accomplish, the
designer can determine which selection techniques to provide.

For each scope of selection, a designer must consider a user's objects and
tasks to determine how many objects a user will want to select in that
scope of selection. The designer also must consider whether a user must
select at least one object in that scope. If so, the scope of selection
is one-based. If not, the scope of selection is zero-based. If a user
will want to select only one object at a time, then the designer provides
single selection for that scope. If the user will want to select more
than one object at a time, then the designer provides multiple selection
for that scope. If the user will typically want to select only one object
but might occasionally want to select more than one object, then the

designer provides extended selection for that scope.

For single selection, a designer must provide point selection and should
consider whether to provide automatic selection in addition to point

selection. For multiple selection, a designer must provide point

selection and either point-to-endpoint selection or random-point selection
(or both).

f29al000.boo Page 1

Figure 67. Random-point Selection. During random-point selection a user
selects several items in any order. The items do not have to

be contiguous.

For extended selection, a designer must provide point selection and can

provide point-to-endpoint selection or random-point selection or both.

Areas and Ranges: When a user selects an item or items by using
point-to-endpoint selection, the result is either a selected area or a
selected range. An area is determined by the spatial arrangement of the
selected items, while a range is determined by the meaning or sequence of
the objects. For example, in a text document, an area of selection could
be delimited by a rectangle defined by a user. A range of selection could
be an irregular shape with a beginning point and an endpoint defined by a
user, but with the intermediate points determined by the product.

Figure 68 shows the difference between an area of selection and a range of
selection in text.

Beginning point Beginning point

End point End point
Area selection Range selection

PICTURE 67

Figure 68. Area Selection and Range Selection in Text. In an area of

selection, the boundary of the selected text is regular and is
based on the spatial area indicated by a user. All items
within the area (in this case, a rectangle defined by a
beginning point and an endpoint) are selected. In a range of
selection, the boundary of the selected text can be irregular.
A user defines the beginning point and the endpoint, and the
product determines which intermediate points are selected. For
some kinds of tasks, a designer might want to provide both area

selection and range selection.

To determine whether the result of point-to-endpoint selection should be
an area or a range, a designer must consider the characteristics of the
data displayed in the view of the object. A designer must also consider a
user's tasks. If the data has linear or tabular characteristics (for
example, text, audio waveforms, musical scores, forms, spreadsheets), a
user will typically want a range of selection, but for some tasks a user
might want an area of selection. For some kinds of data and tasks, a

designer might want to provide both area selection and range selection.

f29al000.boo Page 2

Beginning point

20.5 30.3
30.3 30.2

+ 50 3 40.3
;::""7//"”7:////////7%7

South Div 1

End point
PICTURE 68

Figure 69. Range Selection in Tabular Data. For tabular data, a designer
typically provides range selection. For example, in a
spreadsheet, a user can define a beginning point anywhere in a
cell, then can define an endpoint anywhere in another cell.

The two cells, in their entirety, form opposite corners of the
range of selection, and all other cells in the columns and rows

between the corners are also selected.

29al1000.boo

Page 3

1.4.6.5 Copying and Creating Objects

A user can copy or create objects from existing objects. When a user
copies an object, the resulting new object is an exact duplicate of the
original object. The new object can even have the same name as the
original object, or the user can change the object's name. When a user
creates an object, the resulting new object is similar but not identical
to the original object, and it has a new name. The original object is, in
effect, a template for the new object. A designer can provide designated
objects that act as templates for creating new objects. The designated
objects have special visual representations._ Figure 70 shows a template
of a folder.

‘
LS
i
¥
i
i
LS
i
i
i
i
LS
i
i
i
LS

B

PICTURE 69

Figure 70. A Folder Template. A user can create a new folder by using

direct or indirect manipulation on an existing object.

For example, if a user copies a text document, say an invoice, the new
invoice will contain all of the text, settings, and other elements of the
original invoice and will have the same invoice number. However, if a
user creates a new invoice from an existing invoice, the new invoice will
contain some--but not all--of the information in the original invoice.

The newly created invoice might contain the same company name, mailing
address, and entry fields as in the original invoice, but the invoice date
and invoice number would be different, and the customer name and other

entry fields would not contain the same information as the original.

A designer decides how much information is transferred from one object to
another during object creation and bases the decision on the objects and
tasks involved. In the invoice example above, a relatively small amount
of information is transferred to the newly created invoice. For some
objects and tasks, however, nearly all of the information might be
transferred. For example, an attorney might work with a set of document
objects containing boilerplate text. When the attorney creates a new
object, all of the text, except for a client's name, date, and other

particulars, is transferred to the new object.

A user can copy and create objects by both direct and indirect

manipulation.

1.4.6.5.1 The Clipboard

29al1000.boo Page 1

1.4.6.5.1 The Clipboard

When using indirect manipulation to copy or create objects, a user uses
the clipboard. The clipboard is an area of storage provided by the
operating system to hold data temporarily. A user can copy, create, and
move objects to and from the clipboard. The objects are held on the
clipboard until the user replaces them with other objects or until the
user turns off the system.

The clipboard can hold entire objects or parts of objects, and it can hold
any kind of object. For example, the clipboard can hold a single line of
text or an entire document object, a single data record or an entire
database, a single line segment or an entire graphic. Except when
necessary to prevent the corruption of data, a designer should not
restrict a user from placing any objects or parts of objects onto the
clipboard.

29al000.boo Page 1

1.4.7 Keeping a User Informed

For a user to be in control of his or her interaction with a product, the
user must be aware of the state of objects, processes, or other elements
of the interaction. The CUA user interface provides several ways for a
product to communicate this kind of information to a user.

4.7.1 Messages
1.4.7.2 Progress Indicators
4.7.3 Information Areas
1.4.7.4 Status Areas
1.4.7.5 Emphasis

29al000.boo Page 1

1.4.7.1 Messages

A message provides the most detailed kind of information to a user and is
appropriate when the information is particularly important or urgent.
Message windows often contain not only a description of a problem but also
an explanation of how to correct the situation. They also contain push
buttons that help a user decide how to continue working. Some message
windows contain more elaborate groups of controls that allow a user to

make more extensive corrections right in the message window.

...

= Olode oo dertiicnlon llunoe: &
The identification number does not have
enough numbers.

|dentification number

Figure 71. Message. A message describes a situation and can contain

controls that help a user decide which action to take.

f29al000.boo Page 1

1.4.7.2 Progress Indicators

To provide feedback to a user during longer (typically five seconds or
more) processes, a designer can use a progress indicator. A progress
indicator is a visible cue that indicates progress toward the completion
of a process, for example copying or sorting a group of objects. A
progress indicator can indicate a specific amount of time. For example, a
progress indicator could consist of a digital clock that displays the time
remaining in a process. A progress indicator can also indicate a relative
amount of time. For example, a progress indicator could consist of a
slider that fills gradually as the process continues. When the process is
complete, the slider is completely filled. A progress indicator can
appear in its own window or in the window of the object that is undergoing

the process.

PICTURE 71

Figure 72. Progress Indicators. Progress indicators can take several
forms. The top progress indicator indicates the time remaining
in a process. The one in the center indicates both the total
time a process will take and the time elapsed so far. The one
on the bottom indicates the amount of the task completed in

relation to the amount of the task yet to be completed.

f29al000.boo Page 1

1.4.7.3 Information Areas

An information area is a small area, usually at the bottom of a window,
used to display a brief explanation or description of the state of an
object. It can also be used to display brief help information or
information about the completion of a process. Information areas are less
disruptive than messages and are appropriate for information that is not
urgent.

Make Madel Price Buyers WIN

Watson Patriat $22,000 34225RX 5637
Hutton Sapphire L $14,400 G723ERE7237
Watson Faser GT $19.000 2354AGG7E32
Watson MudTruck $22,000 34225RX2322
Watson MudTruck $16.900 9832RMI2373
Wheeler Pathwinder $29,100 23454667892
Hutton ProSport $17.000 19305ECO001

Aubun Sport GT $22.000 1 TB32EXE1134

T irEsrriation

area

ey
s
=
=
=
—
=
=y
=
=

Figure 73. Information Area. An information area can be used to display a
brief explanation or description of the state of an object.

f29al000.boo Page 1

1.4.7.4 Status Areas

A status area differs from an information area in that it displays
information about the view of an object rather than about the object
itself. For example, a status area could display a count of the number of
objects in a container displayed in a view, or it could indicate whether
the information displayed in the view has been sorted or filtered. A

status area typically appears at the top of a window, below the menu bar.

Status
area

Model Price Buyers WIN

Watson Palriot $22,000 34225 X 5637
Hutton Sapphire L 14,400 8723EXET237
‘Watzon Faser GT $19,000 23548667832
Watson MudTruck $22,000 34225RX2322
Watson MudTruck $16,900 9832RMI2373
Wwiheeler Pathwinder $29,100 23454667832
Huttan ProSport $17.000 19905ECO00
Sport GT $22.000 7832EXET134

Figure 74. Status Area. A status area displays information about the view
of an object. This status area indicates that this details
view of a container object has been filtered according to some
criteria specified by a user. Ten cars match the criteria.

f29al000.boo Page 1

1.4.7.5 Emphasis

Emphasis is a visible cue that distinguishes one object or group of
objects from another and conveys information to a user. Emphasis is

typically used to indicate that an object or group of objects is:

Selected
The source of a direct manipulation operation

The target of a direct manipulation operation
In use

Unavailable.

Emphasis can be used to display other kinds of information appropriate for

a specific product.

ki

Annual

Rainfall

PICTURE 74 Selected-state emphasis Unavailable-state emphasis

Figure 75. Emphasis. Emphasis is visible highlighting that conveys
information to a user. The icon on the left has emphasis
indicating that it has been selected. The emphasis on the
first choice in the pull-down menu indicates that the choice is
unavailable.

29al000.boo Page 1

1.4.8 Exception Handling

An exception is any event or situation that prevents or has the potential
to prevent a user's action from being completed in the manner the user
expects. Exceptions occur when a product is unable to interpret a user's

action.

Thoughtful application design can often prevent exceptions. For example,
if a designer specifies a way to indicate to a user that a choice is
unavailable, the user is less likely to try to select that choice.
However, because a designer cannot predict every possible action a user
might attempt, a product should include provisions for notifying users
about exceptions and should provide ways to help users recover from them.

Users typically do not expect an exception to occur, although experienced
users can learn to recognize situations that lead to an exception. For
example, a user might habitually attempt to close an object without first
saving any changes made to the object. Each time the user attempts to
close an object, a typical product would notify the user that the object
has been changed and that the changes are about to be discarded.
Eventually the user would come to expect the exception.

When an exception occurs, a product needs to tell a user at least three

things:

J How severe the situation is
l How soon the user must respond
1 What actions the user can take to correct the situation.

Because most users do not expect most exceptions, a designer should take
care to choose a notification method that will inform a user without
alarming the user. There are many methods for conveying this information
to a user. A designer should choose methods appropriate for the users'
tasks and work enviromment, and a designer should apply the methods
consistently throughout a product. In addition, the designer should make
sure that the notification methods complement the help (see_"Help" in
topic 1.4.9) provided by the product so that a user can completely
understand the exception and how to respond to it.

Typical methods for notifying a user about an exception include:
1 Audible cues
3 Visible cues
a Textual cues.
Each is discussed in the following sections.
4,8.1 Audible Cues
1.4.8.2 Visible Cues

4.8.3 Textual Cues
1.4.8.4 Examples of Exceptions and Their Corresponding Notifications

29al000.boo Page 1

1.4.8.1 Audible Cues

An audible cue is a sound generated by a user's computer to draw a user's
attention. A beep is an example of a simple audible cue. If a product

will be used with computer hardware that has advanced audio capabilities,
a designer can be imaginative in specifying more elaborate audible cues,
such as speech synthesis, for example.

29al000.boo Page 1

1.4.8.2 Visible Cues

A visible cue is a change in the appearance of a product's components.

For example, if a user places an inappropriate type of information in an
entry field, the color of the entry field could change to alert the user
that the information falls outside the range of acceptable values for that
entry field.

i
,f’,‘?”/f;//{//}’/lé//

PICTURE 75

Figure 76. Visible Cue. A visible cue can be used to indicate to a user

that different information is required.

If an object other than the object a user is working with requires some
attention from the user before an exception can be resolved, the
appearance of the object's icon could change. For example, if a printer

has run out of paper, the icon that represents the printer could change.

PICTURE 76

Figure 77. Visible Cue. A visible cue can be used to indicate to a user

that an item in an interface needs attention from the user.

29al1000.boo Page 1

1.4.8.3 Textual Cues

When a user needs more information than can be conveyed with an audible
cue or visual cue, a designer can use a textual cue. A textual cue
consists of a word or words describing the exception.
be displayed in a message window.

A textual cue can

29al000.boo Page 1

1.4.8.4 Examples of Exceptions and Their Corresponding Notifications

The following examples illustrate notification methods for alerting a user

to a problem.

1. A user types an inappropriate value into an entry field.

A product could do one or more of the following:

u}

Generate an audible cue.

Change the color of the background of the entry field containing
the error.

Display a message window that describes the error, explains how to
correct the error, and provides controls that allow the user to
correct the error from within the message window (for example, the
message window could contain an entry field into which the user
could type an appropriate value) .

After the user supplies an appropriate value, the background color of

the entry field would change back to its usual color, and the message

window would close.

2. A printer runs out of paper, and the user has not opened a window for

the printer object.

A product could do one or more of the following:

u}

Change the appearance of the printer's icon to indicate that the
printer needs attention.

Generate an audible cue.

Display a message window as soon as the user opens a window for
the printer object. The message window would describe the
situation and would contain a push button that allows the user to
close the message window.

After the user supplies the printer with paper, the printer's icon

would change back to its normal appearance.

2921000.boo

Page 1

1.4.9 Help

A product should provide information to a user about how to use the
product and how to recover from exceptions. Information about how to use
a product is known as help information. Ideally, a product's help
facilities should work together with its methods and mechanisms for
exception handling to provide a user with all of the information needed to
solve any problem the user might encounter.

Help information describes a product's choices, objects, and interaction
techniques. Help information can help a user learn to use a product and
can serve as a refresher when a user has not used a product regularly or

recently.

Products designed for a CUA environment should provide several kinds of
help:

- Information about the contents of a window and the tasks a user can

perform in the window

_ Information about any selected item, including the item's purpose and
ways to interact with the item

_ Information about the key assignments on the keyboard
~ An index of all of the topics for which help is available

Information about using the help facility.

29al000.boo Page 1

1.5 Chapter 5. The CUA Designer's Model--A Summary

"OR-

When combined, the classes of objects described in Chapter 1 (see

Classes" in topic 1.1.4.1), the design principles described in Chapter 3,

and the components of the CUA interface described in Chapter 4 form a
designer's model of the CUA user interface. The following sections
present a summary of how these parts are related in the CUA user

interface.

The CUA designer's model contains all of the fundamental concepts,
components, and relationships in a CUA environment. A designer can use
the CUA designer's model as a foundation for developing products that are
user-oriented. Elements of the CUA designer's model can be reused and
extended to create a user interface appropriate for the intended users'
tasks.__Figure 78 illustrates the CUA designer's model, including the
interrelatedness of the components of the CUA user interface.

Ohiject relationships

Container I« 8

isant fcontaing

| Data | iz :| ‘:Objemb |

“isual representations

Yisible elements |«

containg

1 Window J
£ o >

. j - Pointer ison
Isa i BN

E controls fson
‘ | Cursor | ‘ Screen | -

nirols

Interaction mechanisms represehts

Input
r represents

3 L L —

itani E

o eyhoard

PIC RE 77

Figure 78. Designer's Model of the CUA Interface. Each arrow represents a
relationship between two of the boxed items on the chart.
Characteristics of the relationship are indicated by the
direction of the arrow and by the text beside each arrow. For
example, the arrow that points from Container to Object means
that a container is an object. Double bars indicate a
one-to-many relationship. For example, one container object

can contain many other objects.

The three sections of the figure--object relationships, visual
representations, and interaction mechanisms--correspond to the three
layers of the iceberg model of interface design (see_Figure 8 in
topic 1.2.3).

The figures in the following sections highlight and elaborate on some of

the relationships in the CUA user interface.

1.5.1 CUA Class Hierarchy
.5.2 CUA Containment

1.5.3 CUA Visual Representations
.5.4 CUA Views
.5.5 CUA Interaction Mechanisms

f29al000.boo Page 1

1.5.1 CUA Class Hierarchy

In the CUA environment, container objects, data objects, and device
objects inherit the attributes common to all objects. The workplace,
folders, and product-specific containers inherit the attributes common to

all containers.

Ohject

Container Data Device

Work area Folder Product-specific
containers

Figure 79. Class Hierarchy in the CUA User Interface. Each object that
appears below another object in this hierarchy inherits

characteristics of the objects above it.

f29al000.boo Page 1

1.5.2 CUA Containment

Most objects in the CUA user interface contain other objects. The
workplace fills a user's display screen and contains all of the objects a
user works with, including components of the CUA interface.__ Figure 80
shows the basic containment relationships of components of the CUA

interface.
Screen
YWorkplace
YWindows lcons Fointer
on the
workplace
Wiews Cursor
Other Controls Product-specific
views visual representations
of ohjects
PICTURE 79

Figure 80. A Containment Hierarchy for the CUA User Interface. A user's
screen contains the workplace, which contains windows, icons,
and the pointer. Windows contain views and the cursor. Views
contain other views, controls, and product-specific visual
representations of objects.

f29al000.boo Page 1

1.5.3 CUA Visual Representations

The elements of a user's computer system are represented visually in the
CUA interface._ Figure 81 shows how the elements are represented.

Figure 81. Visual Representations in the CUA User Interface

This element... Has this visual representation.

|
|
|
|
|
|
| Object
|
|
|
|
|

|
|
Screen | Workplace
|
| Icon and views
|
Mouse | Pointer
|
Keyboard | Cursor
|

29al000.boo Page 1

1.5.4 CUA Views

The views available for representing objects are shown in Figure 82. For
in topic 1.4.5.1.

a more detailed discussion of views, see "Views"

isws

I | I I
Composed Caontents Sethings Help

Figure 82. Views Available for Representing Objects in the CUA User
Interface. The CUA interface provides four basic types of

views.

29al000.boo Page 1

1.5.5 CUA Interaction Mechanisms

Interaction in the CUA user interface consists of input and feedback.
Figure 83 shows the elements of interaction in the CUA user interface.

Interaction
Input Feedback

Keyboard Touch Mouse Audible “isible

T E Y ,__|

Selection Text Selection Direct Selection Direct)
entry manipulation manipulation Textual Graphical

Figure 83. Interaction Mechanisms in the CUA User Interface. Interaction
consists of input and feedback. Input can be by way of a
mouse, keyboard, or touch. Feedback consists of audible cues

and visible cues. Visible cues can be textual or graphical.

A user's input modifies a view, which can modify the object represented in
the view.

29al000.boo Page 1

1.6 Chapter 6. Designing a Product with a CUA User Interface

To illustrate one approach to the process of designing a product with a
CUA user interface, we designed a sample product, and we documented our
steps. This chapter describes those steps. Designers can follow these

steps or can adapt this process to suit their needs.

We designed a product that could be used for selling new cars at a car
dealership. Our design is a partial design only, intended to highlight
the main design considerations and the processes a designer can follow
when developing a user interface. A full-fledged product design would

contain much more detail.

The product is an example only, and it is not intended to represent the
practices of a particular car dealership, nor is it intended to represent
the ideal product for all car dealerships. Likewise, our process is an
example only. This process worked for us, but a different process might
work equally well for a different group of designers.

1.6.1 Overview of the Development Process

1.6.2 Researching and Planning the Product
.6.3 Designing the Product

1.6.4 Using the Product

29al000.boo Page 1

1.6.1 Overview of the Development Process

The basic steps in our development process were:

Researching and planning
Designing

Prototyping

Testing.

I A

Each of these steps entails one or more subprocesses of its own, and we
went through each step for each part our product's interface. When we
tested each part of our product, we compared the results with the
objectives we set during the planning stage. If the results met our
customer's requirements and our requirements, we proceeded to design the
next part of the interface. If not, we changed the design and tested the
product again. This process is known as an iterative development process.
Figure 84 illustrates the iterative development process.

Research and Planning

1. Gather requirements

2_Learn about users
and their tasks

3. Match requirements

to tasks
Design
1. Objects
Test 2. Views
3. Menus
4. Windows
Prototype

Figure 84. Iterative Development Process. For each part of our product's
interface, we developed a prototype and tested the prototype.
When the test results satisfied us, we moved on to the next

part of the interface.

During each iteration of the development process, we kept in mind the

design principles discussed in Chapter "Goals and Design Principl of
the CUA User Interface" in topic 1.3. That is, we looked for ways to:

i Provide immediate feedback for each action

3 Reduce the number of steps required to accomplish a task

J Provide full function with a small number of objects

| Increase a user's control over the product

3 Reduce the potential for exceptions

J Reduce the effect of exceptions

l Allow a user to use either the keyboard or the mouse to accomplish a

task
J Provide interaction techniques suited to the needs of novice users and

expert users.
Finally we arrived at a satisfactory design.
The rest of this chapter describes the processes we used in researching,

planning, and designing our product. Although prototyping and testing

also have their own processes, a detailed discussion of prototyping and

f29al000.boo Page 1

testing is beyond the scope of this book. However, we will say that we
tested our product for consistent behavior and for compatibility with a
user's expectations. We also sought feedback from test subjects about

whether the product was pleasing to use.

f29al000.boo Page 2

1.6.2 Researching and Planning the Product

First we recognized that we were serving two distinct audiences: the
people who buy a product (our customers) and the people who use a product
(our users). Sometimes the two audiences overlap, but in this case, our
customers were the upper management staff of a car dealership, while the
users were primarily the sales staff and lower management staff.

To begin our iterative development process we had to:

Gather requirements from upper management
Learn about the users and their tasks

- Match management's requirements to the users' tasks.

1.6.2.1 Step 1. Gathering Requirements from Management

1.6.2.2 Step 2. Learning about Users and Their Tasks

1.6.2.3 Step 3. Matching Management's Requirements to the Users' Tasks

29al000.boo Page 1

1.6.2.1 Step 1. Gathering Requirements from Management
By interviewing the owner and general manager, we learned that they wanted
to:

Eliminate paperwork
Reduce errors in locating cars and information about cars

Increase the amount of time salespeople spend talking with customers
by reducing the amount of time the salespeople spend tracking down
information and getting approval of sales

— Sell more cars.

The information from management was result-oriented--that is, the managers
did not tell us the details about how they sell cars, nor did they tell us
how they expected us to design a product. Instead, they gave us

high-level information about what they hoped to gain by using our product.

29al000.boo Page 1

1.6.2.2 Step 2. Learning about Users and Their Tasks

To serve the needs of the users of our product, we had to gather

information about the users. We interviewed a salesperson with extensive

experience at car dealerships. He helped us compile a profile of car

salespeople, the primary users of our product.

In particular, we were interested in salespeople's:

Experience

- How much experience do they have doing their job?

- How much experience do they have using computers?

- How much experience do they have using similar user interfaces?
Capabilities

- With what styles do they approach their work?

- How do they learn new systems?

Motivations

- How will the new product affect their work routine?

- How will the new product affect their productivity?

Desires

- How would they like to use the product?

- What kinds of features would they like to see in the product?

We found out that salespeople:

T T I I

Are not experienced in using computers

Are not interested in programming computers

Vary in their ability and interest in learning new procedures

Use varied techniques to sell cars

Are competitive

Are knowledgeable about the products they sell

Want to be able to communicate with their customers while they use the

product.

After analyzing the characteristics of our product's intended users, we

realized that our product's interface must:

i

Be easy to learn

Be flexible enough to serve users with different approaches to both
learning and sales

Contain elements resembling those already used in a salesperson's job

Contain terms that are familiar to a salesperson

Be sophisticated enough to withstand scrutiny of people who are
knowledgeable about their field

Be appropriate to be seen by a customer.

We also needed to learn about the tasks the users perform in their jobs.

With the help of our expert salesperson, we drew an organization chart for

a typical car dealership. The organization is shown in Eigure 85.

29al000.boo Page 1

Figure 85.

Owner, President
General Manager

Lot Attendants

]
Used Car
Sales Manager

New Car
Sales Manager

Finance
Manager

Office

Fleet
tanager

Pars
Manager

Service
Manager

Manager
T

I
I l | | | [| I —*
Sales Staff || Phone || Cashier || Title || Accounts Parts Mechanicsl Sarvice
| | Operator Clerk_{|Personnel || Persannel Writers

Typical Automobile Dealership Organization

We compiled a list of the dealership's personnel and of the main tasks
that each person performs.__ Figure 86 shows the list of tasks.

Figure 86. Users and Tasks in a Car Dealership

Users and Tasks

Users and Tasks

Owner, President

General Manager

[0 Meets with manufacturer's representatives [J Hires dealership personnel
O Manages dealership personnel O Sets guidelines for profit margins
O Studies market trends and forecasts O Determines pack fees (fees added to dealer invoice)
[J Examines accounting reports. O Sets labor costs for service.
New Car Sales Manager Used Car Sales Manager
] Orders new cars and trucks O Reviews the National Automobile Dealers Association
(NADA) values for comparable cars
LI Reviews statistics of vehicles sold
O Sets prices for used cars
O Hires and manages salespeople
Il Determines condition and value of trade-ins.
O Approves sales.
Salesperson
[J Sells cars and trucks [J Prints sales contracts
[l Maintains preferred customer lists [l Finds financing for customers
O Reads used car sheets ("cards") O Manages manufacturer's financing programs
[} Writes follow-up letters. [} Sells extended warranties, debt insurance, and

roadside services.

u]

Office Manager

Manages office personnel

Handles titles and transfers, registration,

payoffs with banks

Submits paperwork required by law

Works with the dealership's lawyer.

loan

Fleet Manager

O Orders fleets of cars and trucks for customers

] Negotiates with purchasing agents at customers'

businesses

[l Keeps track of customers' business inventories
(quantity, age)

O Estimates life span of customers' fleets.

29al1000.boo

Parts Manager

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Finance Manager
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Parts Personnel

Page 2

m Orders parts and sets prices for parts m
[J Manages parts counter 0
Il Updates parts inventory Il
O Compares parts to service order. O

Selects parts from shelves

Unpacks boxes of new parts and stocks shelves

Updates parts inventory

Compares parts to service order.

Service Manager

Service Writer

O Sells service O Sells service
O Runs service specials O Writes a service order
Determines warranty work.
[J Handles service orders
U Gives cost estimates for parts and labor.
Mechanic Lot Attendant
[J Fixes cars [J Matches manufacturer's invoice to dealer's invoice
and adds dealer's invoice to window
O Records time and parts used
U Installs after-market options (stereos, pinstriping)
] Reads service bulletins and service manuals.
O Prepares new and used cars (washes cars, removes

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| 1 Trains mechanics | 11
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

plastic, installs hubcaps, checks tire pressure) .

Because our sample product will be used during the process of sell
cars, we looked at a salesperson's tasks in more detail.

In a typical sales transaction, a customer enters a showroom and i
about a car or several cars. The salesperson in turn asks the cus
what features and price range the customer is looking for. Using
information the customer provides, the salesperson gathers informa
about the dealership's cars that match the customer's requirements
salesperson then presents the information to the customer.

If a car appeals to the customer, the customer takes the car for a
drive. If the customer still is interested in the car after the t
drive, the salesperson and customer negotiate about the financial
arrangements. They use a worksheet to record the details of the p
purchase. Once they come to an agreement, the salesperson takes t!
worksheet with the agreed-to figures to the sales manager for appr
If the sales manager approves the sale, the salesperson passes the
worksheet along to the finance manager.__FEigure 87 lists the tasks
salesperson, the sales manager, and the finance manager.

ing

nquires
tomer
the
tion

. The

test
est
roposed
he

oval.

of the

29al000.boo Page 3

|

|

| Users | Tasks

| |

| Salesperson

| |

| | O Finds out what the customer wants, needs, and can
| | afford

| |

| | O Finds out what products the car dealership can
| | provide that most closely match the customer's
| | wants, needs, and budget.

| |

| | O Fills out a worksheet that lists the:

(]

(]

- Make and model of car

- Price of the car

- Trade-in value of the customer's old car (if
applicable)

- Down payment amount (if applicable).

Gets the sales manager's approval.

Gives the worksheet information to the finance
manager.

Sales Manager

Reviews worksheet and authorizes sales after
considering:

- Agreed-to price
- Trade-in value
- Options.

Finance Manager

o

Arranges financing for customer
Completes the sale.

292l000.boo

Page 4

1.6.2.3 Step 3. Matching Management's Requirements to the Users' Tasks

After gathering requirements from management and analyzing the users'
tasks, we had to match the requirements and the tasks. We realized that

our product's interface had to provide:

- A way to record information about a customer (thus meeting the

requirement to eliminate paperwork)

- Quick access to information about the dealership's stock of cars (thus
meeting the requirements to reduce errors and to reduce time spent
tracking down information)

- A way to combine customer information with dealership information

(thus meeting the requirement to eliminate paperwork)

- A way to quickly transfer information among users--salespeople, sales
manager, finance manager--without leaving the customer unattended
(thus meeting the requirements to reduce paperwork and increase

contact time) .

29al000.boo Page 1

1.6.3 Designing the Product

After we completed our research and planning, we began designing the
product. First we designed our intended users' model; that is, we took
the information we had learned about salespeople and used it to create a
model that describes the way the salespeople would understand how the
product works. Then we defined the objects, their relationships, and
their behaviors, and we decided what kinds of views were needed to allow
the salespeople to work with the objects. Then we designed the menus and
choices for the objects, and finally, we designed the windows that
contained the views and controls through which the salespeople could work
with the objects.

1.6.3.1 Step 1. Defining the Objects

1.6.3.2 Step 2. Determining the Necessary Views
1.6.3.3 Step 3. Designing the Menus

1.6.3.4 Step 4. Designing the Windows

29al000.boo Page 1

1.6.3.1 Step 1. Defining the Objects

Our analysis of a salesperson's tasks gave us the base of information we
needed to start defining objects for our product. At this stage of
design, we were interested in what objects a user needs, how the objects
are related, and how the objects behave.

.6.3.1.1 Determining What Kinds of Objects Are Needed
1.6.3.1.2 Determining the Relationships and Behaviors of the Objects

29al000.boo Page 1

1.6.3.1.1 Determining What Kinds of Objects Are Needed

To decide what objects a salesperson needed, we looked at the real-world
objects a salesperson used to sell a car. We wrote a description of a
salesperson's tasks and underlined all the nouns:

7 Find out the customer's wants, needs, and budget.

3 Find out what the car dealership has in stock that most closely
matches the customer's wants, needs, and budget.

1 Arrive at an agreement using a worksheet.

1 Get approval from the sales manager.

1 Give the worksheet information to the finance manager.

After underlining the nouns, we made a list of them:

Salesperson
Customer
Wants

Needs
Budget
Agreement
Worksheet
Car
Dealership
Stock

Sales manager

e e = A)

Finance manager.

To create our final list of objects, we edited the list of nouns to
eliminate duplication and to combine those concepts that seemed to fit
together. We ended up with this list of objects:

Car

Car lot (the entire collection of individual cars available for sale)
Customer (including the customer's wants, needs, and budget)

Customer list (the entire collection of individual customers)
Worksheet (the commonly used term for the agreement)

Worksheet list (the entire collection of individual worksheets)
Salesperson

Sales manager

e A

Finance manager.

These objects are described in the following sections.

Car Object: Each car object represents a real car for sale in the car
lot. A car object contains descriptive information about the
corresponding real car, such as its year, make, model, price,
factory-installed options, color, and vehicle identification number (VIN).
Because the primary purpose of a car object is to convey information, the
car object is a data object.

Car Lot Object: The car lot object represents the physical lot where the
dealership's cars are parked. Because the primary purpose of a car lot
object is to hold car objects, the car lot object is a container object.
A typical dealership sells new cars and used cars. The two kinds of cars
are often parked in different lots. To make our product seem more
familiar to users, we provided two car lot objects: a new car lot and a
used car lot. Our sample product uses only the new car lot, but a fully
developed product for a dealership would use both car lot objects.

29al000.boo Page 1

Customer Object: Each customer object represents a real customer who has
inquired about a car. A customer object contains descriptive information
about the corresponding real customer, such as the customer's name,
address, telephone number, and identification number. Because the primary
purpose of a customer object is to convey information, the customer object

is a data object.

Customer List Object: The customer list object contains all of the
customer objects, much as the car lot object contains all of the car

objects. It is a container object.

Worksheet Object: A worksheet object contains information about the
customer and the car to be purchased, along with other information, such
as the financial arrangements of the purchase. A worksheet object is a

data object.

Worksheet List Object: A worksheet list object contains all of the
worksheet objects, just as the customer list object contains all of the

customer objects. It is a container object.

Salesperson Object: Each salesperson object represents one of the
dealership's salespeople. A salesperson object contains descriptive
information about the corresponding real salesperson, such as the
salesperson's name, address, sales record, commissions, and bonuses. It
is a data object. Because our sample transactions take place from the
salesperson's perspective, we did not need to use the salesperson object.
However, in a fully designed product for a real car dealership, a
salesperson object might be used for payroll or personnel tasks.

Sales Manager Object and Finance Manager Object: At first we considered

creating the sales manager and the finance manager objects so that they

were like the customer and salesperson objects--that is, they would
contain descriptive information about each person. However, to sell a
car, a salesperson does not require descriptive information about either
manager. From a salesperson's perspective, a sales manager and a finance
manager receive and distribute information. Because the users of our
sample product are salespeople, we decided to emphasize the passing of
information by representing the finance manager and the sales manager as
specially tailored out-baskets for electronic mail. They are device
objects that automatically send their contents to the corresponding
individual.

Figure 88 shows our preliminary drawing of these objects.

A 5

Customer Shrs ,ERSON Saces FrrAncE
MANACER. MarAcER

Worksheet

Figure 88. Hand Drawing of Users' Objects. The drawing indicates how the

f29al000.boo Page 2

29al1000.boo

objects might appear on a salesperson's screen. We later
realized that the sales manager object and the finance manager
object could be represented differently, in a way that more
accurately conveyed the nature of a salesperson's transactions
with the real managers.

Page 3

1.6.3.1.2 Determining the Relationships and Behaviors of the Objects

Once we had determined which objects we needed, we had to determine how

each object interacted with the other objects.

We drew a diagram to show the relationships among the objects.

Figure 89. Relationships among the Car Dealership Objects

Then we considered the flow of information among the
a worksheet, a salesperson combines information from
customer object. While we did not want to prevent a
typing or re-typing all of the information contained

knew that typing is slow and can lead to errors. We

objects.

Customer |, is stored in
List Customer
is associated .
with containg
Sales
Manager
Wiotksheet i :)
List y LA ‘Worksheet iz sent to
. Finance
containg i associated Manager
i with
is stored in
Carlot |4 Car

To complete

a car object and a

salesperson from

in those objects, we

knew we could provide

a quicker and more accurate way to transfer the information by allowing a

salesperson to manipulate the information directly--that is,

by dragging

the customer and car objects to the worksheet objects--or indirectly, by

using action choices that allow the salesperson to copy information from

one object and place it into another.

Once a worksheet is complete, a salesperson must get approval from the

sales manager and then must send the worksheet to the finance manager to

close the sale. One solution might have been to allow the salesperson to

print a copy of the worksheet and carry it in person to the managers.

However, one of the requirements we received from the dealership's upper

management was to eliminate paperwork, so we decided that electronic mail

offered the most efficient paperless solution. Also,

by sending the

worksheet electronically, the salesperson can stay in contact with the

customer instead of leaving the customer alone while the salesperson

locates the appropriate manager.

We had to decide what the results of direct manipulation would be for

various combinations of source objects and target objects.

In particular,

we were interested in whether data should transfer from one object to

another when a salesperson drags a source object to a target object.

Based on the relationships we defined, we created the following table to

illustrate the default results of direct manipulation of pairs of objects.

Figure 90. Default Results for Direct Manipulation.

For certain pairs of objects,

data is transferred from one

object to the other when a salesperson drags it and drops it on the other.

Target Object

Customer

Source |

List | Car
|
|

Object Customer

Car Lot

|
Worksheet |
|
|

Worksheet

List

29al1000.boo

Page 1

| Customer | No data | Customer is | No data | No data | Customer | No data | Customer | Customer
| | transfer | moved into | transfer | transfer | data is | transfer | data is | data is

| | | customer | | | copied into | | copied and | copied and
| | | list | | | worksheet | | sent to | sent to

| | | | | | | | finance | sales

| | | | | | | | manager | manager

| | | | | | | | |

| Customer | No data | No data | No data | No data | No data | No data | No data | No data

| List | transfer | transfer | transfer | transfer | transfer | transfer | transfer | transfer
| | | | | | | | |

| Car | No data | No data | No data | Car is | Car data is | No data | No data | No data

| | transfer | transfer | transfer | moved into | copied into | transfer | transfer | transfer
| | | | | car lot | worksheet | | |

| | | | | | | | |

| Car Lot | No data | No data | No data | No data | No data | No data | No data | No data

| | transfer | transfer | transfer | transfer | transfer | transfer | transfer | transfer
| | | | | | | | |

| Worksheet | No data | No data | No data | No data | No data | Worksheet | Worksheet | Worksheet
| | transfer | transfer | transfer | transfer | transfer | is moved | data is | data is

| | | | | | | into | copied and | copied and
| | | | | | | worksheet | sent to | sent to

| | | | | | | list | finance | sales

| | | | | | | | manager | manager

| | | | | | | | |

| Worksheet | No data | No data | No data | No data | No data | No data | No data | No data

| List | transfer | transfer | transfer | transfer | transfer | transfer | transfer | transfer
| | | | | | | | |

29al1000.boo

Page 2

1.6.3.2 Step 2. Determining the Necessary Views

Once we had identified and defined the objects, we had to determine which
kinds of views would give the salespeople the best access to the objects
and the information they contain. In determining the views needed, we
considered the ways in which a salesperson would interact with each object
and its information. We also provided a help view for each object.

1.6.3.2.1 Views of the Car Object
.6.3.2.2 Views of the Car Lot Object
1.6.3.2.3 Views of the Customer Object
1.6.3.2.4 Views of the Customer List Object
1.6.3.2.5 Views of the Worksheet Object
.6.3.2.6 Views of the Worksheet List Object

29al000.boo Page 1

1.6.3.2.1 Views of the Car Object

Both a salesperson and a customer need to know general information about a
car, and a salesperson needs a way to work with the information. We
decided that the best way to present the information would be a
combination of textual information and graphical information. The text
would describe the make, model, and year of the car. The graphic would be
a picture of the car. We drew a sketch of a proposed General Information

view of a car.

a B ; Peostorr~ Gtneene Tnropmmrron Lt
Fre Eomr View Heer

. Cocor
Mave \/*vrro/u . Lidi /] =] [///Z
Mopew [Proseorr [V friee: Frs,pon oo
Ve

2
prnsserr [Borerll] T
e ABrerry | Reapy P

P

Figure 91. Hand-Drawn Version of General Information View of a Car Object

f29al000.boo Page 1

1.6.3.2.2 Views of the Car Lot Object

Because the car lot is a container, we knew we had to provide at least the
two standard contents views: an icons view and a details view. For the
icons view, we decided to group vehicles according to type, and we decided
to represent each type of vehicle with a different icon.__Figure 92 shows
our initial sketch of an icons view of the car lot.

ey, Che. Lor y 1]
Free Evir View Heer

= el

A Cor A Pexoe Teuck

o o1 []

A £ufur7 Caxr

A Van

[—

Figure 92. Hand-Drawn Version of an Icons View of the Car Lot

In a dealership that does not use computers in the process of selling
cars, a salesperson typically searches manually through a file or listing
of the cars available on the car lot. When a customer is ready for a test
drive, a salesperson has to walk through the real car lot to locate the
car. We decided that a more efficient approach would be to offer a
salesperson several ways to look for particular cars available for sale,
and we wanted to let the computer, rather than the salesperson, do the

actual searching for available cars.

Because a customer is typically interested in only certain cars in the car
lot, we decided to provide a way for a salesperson to specify criteria for
which cars to include in either contents view of the car lot. We added a
feature to the contents views to allow a salesperson to filter the view so
that it displays only the cars that have the features the customer wants.
(See "The Window for the Filtering Feature" in topic 1.6.3.4.2 for more
details.) By using this feature, a salesperson can filter the view of the

cars according to:

a Year
3 Make and model
| Color

| Price range
3 Installed features.

We decided that once a salesperson has filtered the view so that only
certain kinds of cars are displayed, the salesperson might also want to
sort the displayed cars according to the same kinds of criteria. (See

"The Window for the Sorting Feature" in topic 1.6 4 for more details.)

Finally, we decided to provide a Map view that showed the positions of the
real cars on the real car lot. The Map view is a composed view of the car
lot. It saves the salesperson and customer time by pinpointing the

location of the car that the customer wants to test drive.

f29al000.boo Page 1

The settings view for the car lot object provides a way for a user to
change the appearance of some aspects of the car lot object. For example,
a user can change the size of the icons that represent the car objects.

29al000.boo Page 2

1.6.3.2.3 Views of the Customer Object

The general information associated with each customer includes the

customer's

Name

Address (street, city, state, ZIP code)
Phone numbers

Identification number

Driver's license number

Date of birth.

Iy

Additional information associated with a customer might include detailed

financial information, such as the customer's

a Assets

- House

- Car

- Stocks

- Savings

- Income
a Debts

- Rent or mortgage payments
- Consumer loans

Credit card balance and credit limit.

This kind of information can be thought of as a customer's attributes or

"settings," so we decided to provide a settings view.

the notebook for the customer object.

Settings views can
be displayed well in a notebook.__Figure 93 shows our initial sketch of

o % O ToocE, SEAN ~ PERSONAL FHNFORMATION

Fice Epmr Vigw Heep

—

NAmE

O /TooLE, SEAN

Aboeress

BiermpATE []

Crrn 3 sme[1 2P[__1
Prowe Home [] wors |]

LicEnsSE Z 7
B e R——

Pace 1 o 2

Figure 93. Hand-Drawn Version of the Customer Window

29al1000.boo

Page 1

1.6.3.2.4 Views of the Customer List Object

The customer list is a container object; therefore it needed at least an
icons view and a details view. We also decided to provide a mechanism
called the Include Customers window that allows a salesperson to filter
and sort the customer objects. Because the views of the customer list are
similar to the contents and settings views of the car lot, we do not
describe them further here.

29al000.boo Page 1

1.6.3.2.5 Views of the Worksheet Object

Because the worksheet object is where customer information and car

information is combined, we knew we had to design a view that displays the

same kind of information that the car and customer objects contain.
Figure 94 shows our initial sketch of the worksheet object.

PICTURE 89

Figure 94.

292l000.boo

=0 O'Tootk — SPORTSCAR ~ WORKSHELT v £
Fleg EDIT VIEW HELP
T7TEM ORIEIN ML AECREEMENT
Lisr Feice £ /6,000 4 7,000 ?
Porex Sears | ¥ 1, 000 § 500
AMjEm sTeres | 3 200 i /0
FeoormArs i so NO CHAREE
TRADE ~ TN S (J{OO)
TOTHL du,280 %8, s00
<= ¥

Hand-Drawn Version of Worksheet

Page 1

1.6.3.2.6 Views of the Worksheet List Object

The worksheet list, like the customer list and the car lot, is a container
object. We provided the usual contents views: an icons view and a details
view. We also decided to provide a mechanism called the Include
Worksheets window that allows a salesperson, finance manager, or sales
manager to filter and sort the worksheet objects. Because the views of
the worksheet list are similar to the contents and settings views of the

car lot and the customer list, we do not describe them further here.

29al000.boo Page 1

1.6.3.3 Step 3. Designing the Menus

We consulted Part 2, "CUA Reference" for information about the standard

CUA menus. To determine the product-specific choices we needed for our
product, we considered how the object behaviors we had defined
corresponded to the views we had decided upon. We also considered the
relationships between various users and the objects. For example, a
salesperson is not responsible for placing real cars into or removing real
cars from the real car lot. To make our sample product seem more like the
real world that the users are familiar with, we restricted the
salesperson's access to the car lot object by providing a limited set of
choices in the menus for the car lot object. A salesperson is allowed to
view information about a car object in the car lot object but cannot add
or remove car objects. In a fully designed product, some other person,
perhaps a lot attendant or a sales manager, would have access to the car
lot object to add or remove cars. However, because a salesperson is in
the best position to know whether a customer is seriously interested in a
car, the salesperson is allowed to create a new worksheet object and add
it to or remove it from the worksheet list object.

The following sections discuss the menus for the objects.

1.6.3.3.1 The System Menu
1.6.3.3.2 Menus for the Car Object
.6.3.3.3 Menus for the Car Lot Object
.6.3.3.4 Menus for the Customer Object
.6.3.3.5 Menus for the Customer List Object
1.6.3.3.6 Menus for the Worksheet Object
1.6.3.3.7 Menus for the Worksheet List Object

29al000.boo Page 1

1.6.3.3.1 The System Menu

When it is provided, the system menu is displayed from the system menu
symbol at the upper left corner of a window. It contains choices that
allow a user to work with a window itself. The following table describes
the system menu choices.

Figure 95. Choices in the System Menu

Choice Purpose

Restore Returns a window to its previous size

Move Allows a user to move a window to a different location on the workplace
Size Allows a user to change the size of a window

Minimize or Hide

Removes a window

minimized window.

from the workplace.

Hide does not.

Minimize displays a graphic of a

Maximize Increases a window to its largest possible size

Close Closes a window and all secondary windows associated with it

Window list Displays a window containing a list of all windows open on the workplace
Split Allows a user to split a window into two or more panes or to resize existing

panes

29al000.boo Page 1

1.6.3.3.2 Menus for the Car Object

From a salesperson's perspective, most of the information about a car
object is fixed--that is, the information is based on a real-world object
and cannot be changed unless something changes about the real-world
object. For example, it would not make sense to allow a salesperson to
change the color of a car object, because its color corresponds to the
color of the real car that the car object represents. Because a
salesperson can change little about a car object, the car object has only
a few menus, and the menus contain relatively few choices.__Figure 96

shows the menus for the General Information view of the car object. For

an illustration of the complete window, see_Figure 108 in topic 1.6.3.4.1.

Figure 96. Menus for the General Information View of the Car Object

The table below describes the menu choices for the car object.

Figure 97. Menus for the Car Object

available for the car object

General help Displays a window containing help information about the tasks a

|

|

| Menu | Choice | Purpose

| | |

| Car | Open as General | Allows a salesperson to open another window for the same car object.
| | Information | Because there is only one view for the car object, the name of the

| | | view (General Information) is part of the name of this choice.

| | |

| | Print | Allows the salesperson to print the information about the car

| | |

| Edit | Undo | Undoes the salesperson's last action

| | |

| | Redo | Redoes the last action that the salesperson undid

| | |

| | Copy | Stores a copy of the selected car object on the clipboard

| | |

| | Find... | Displays a window that contains controls that allow a salesperson to
| | | search for specific car information

| | |

| Windows | Window list | Displays a window containing a list of other windows that have been
| | | opened from this car object, from other objects associated with this
| | | car object, and from other windows associated with the car

| | | dealership product

| | |

| Help | Help index | Displays a window containing an index of all of the help information
| | |

| | |

| | |

| | |

salesperson can accomplish in the window for the car object

f29al000.boo Page 1

Using help

Displays a window containing

use help information

an explanation of how to retrieve and

Displays a window containing
product

help information about how to use the

Product information

Displays a window containing
version number and copyright

information such as the product's
notice.

29al1000.boo

Page 2

1.6.3.3.3 Menus for the Car Lot Object

Figure 98 illustrates the menus and choices we decided upon for the Icons
view of the car lot object. The menu bar choices are the same for the
Details, Settings, and Map views, so those views are not shown here.
These menus and choices allow a salesperson to interact with the
information displayed in the views. Because a salesperson cannot change
the contents of the car lot except by selling a car, the menus contain no
choices that allow a salesperson to add cars to or remove cars from the
car lot. For an illustration of the complete window, see Figure 109 in
topic 1.6.3.4.2.

PICTURE 91

Figure 98. Menus for the Icons View of the Car Lot Object

The following table describes the menu choices for the car lot object.

Figure 99. Menus for the Car Lot Object

search for a specific type of car

|

|

| Menu | Choice | Purpose

| | |

| Car Lot | Open as > | Allows a salesperson to open a new window containing a different

| | | view of the same object. The Open as > choice leads to a cascaded
| | | menu that contains the names of the views available.

| | |

| | Print | Allows a salesperson to print a list of cars in the car lot

| | |

| Selected | Open as General | Opens a new window containing the general information view of the
| | Information | selected car. Because this is the only view available, it does not
| | | appear in a cascaded menu.

| | |

| | Print | Allows the salesperson to print the general information for the

| | | selected car

| | |

| Edit | Undo | Undoes the salesperson's last action

| | |

| | Redo | Redoes the last action that the salesperson undid

| | |

| | Copy | Stores a copy of the selected object on the clipboard

| | |

| | Find... | Displays a window that contains controls that allow a salesperson to
| | |

| | |

f29al000.boo Page 1

Select all

Selects all of the car objects in the car lot at once

Deselect all

Deselects all of the car objects that were previously selected in
the car lot

available for the car lot object

General help

Displays a window containing help information about the tasks a

salesperson can accomplish in the window for the car lot object

Using help Displays a window containing an explanation of how to retrieve and
use help information
Tutorial Displays a window containing help information about how to use the

product

Product information

Displays a window containing information such as the product's

version number and copyright notice.

| | |

| | |

| | |

| | |

| | |

| View | Icons | Displays the contents of the car lot object as icons

| | |

| | Details | Displays the contents of the car lot object as rows and columns of
| | | related information

| | |

| | Settings | Displays the settings for the car lot object

| | |

| | Map | Displays the contents of the car lot object as a map of the car lot,
| | | with each car icon in a location that corresponds to the place where
| | | the real car is parked

| | |

| | Sort... | Displays a window that allows a salesperson to specify the criteria
| | | that determine the order in which the cars are displayed

| | |

| | Include... | Displays a window that allows a salesperson to specify the criteria
| | | that determine which cars are displayed

| | |

| | Refresh> | Displays a cascaded menu containing the choices On and Off, which

| | | allow the salesperson to choose whether to continually update the

| | | view of the car lot

| | |

| | Refresh now | Causes the view of the car lot to be updated immediately to reflect
| | | any changes in the car inventory since the last time the view was

| | | refreshed

| | |

| Windows | Window list | Displays a window containing a list of other windows that have been
| | | opened from this car lot object, from other objects associated with
| | | this car lot object, and from other windows associated with the car
| | | dealership product

| | |

| Help | Help index | Displays a window containing an index of all of the help information
| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

29al1000.boo

Page 2

1.6.3.3.4 Menus for the Customer Object

Figure 100 illustrates the menus and choices for the Personal Information

view of the customer object. The choices are described in the following
table. For an illustration of the complete window, see_Figure] in
topic 1.6.3.4.3.

Figure 100. Menus for the Personal Information View of the Customer Object

Figure 101. Menus for the Customer Object

Deselect all

f29al000.boo Page 1

Deselects all of the information in the window

|

|

| Menu | Choice | Purpose

| | |

| Customer | Open as Personal | Allows a salesperson to open another window for the same customer

| | Information | object. Because there is only one view for the customer object, the
| | | name of the view (Personal Information) is part of the name of this
| | | choice.

| | |

| | Print | Allows the salesperson to print the information about the customer
| | |

| | Send... | Allows the salesperson to send customer information to another user
| | |

| Edit | Undo | Undoes the salesperson's last action

| | |

| | Redo | Redoes the last action that the salesperson undid

| | |

| | Cut | Removes the selected object from the window and stores it on the

| | | clipboard

| | |

| | Copy | Stores a copy of the selected object on the clipboard

| | |

| | Create | Makes a new object from the selected object and stores the new

| | | object on the clipboard

| | |

| | Paste | Places a copy of the contents of the clipboard into the customer

| | | object at a user-specified location

| | |

| | Clear | Removes the selected object from the customer object without

| | | compressing the space the object occupied

| | |

| | Find... | Displays a window that contains controls that allow a salesperson to
| | | search for specific customer information

| | |

| | Select all | Selects all of the information in the window

| | |

| | |

| | |

Window list Displays a window containing a list of other windows that have been
opened from this customer object, from other objects associated with
this customer object, and from other windows associated with the car

dealership product

Help index Displays a window containing an index of all of the help information

available for the customer object

General help Displays a window containing help information about the tasks a

Using help Displays a window containing an explanation of how to retrieve and
use help information
Tutorial Displays a window containing help information about how to use the

product

Product information Displays a window containing information such as the product's

version number and copyright notice.

|
|
|
|
|
|
|
|
|
salesperson can accomplish in the window for the customer object |
|
|
|
|
|
|
|
|
|
|

29al000.boo Page 2

1.6.3.3.5 Menus for the Customer List Object

Figure 102 illustrates the menus and choices for the Icons view of the

customer list object. The menu bar choices are the same for the Details

and Settings views, so those views are not shown here. The menu choices

are described in the following table. For an illustration of the complete

window, see_Figure 128 in topic 1.6.4.1.

Figure 102. Menus for the Icons View of the Customer List Object

Figure 103. Menus for the Customer List Object

29al1000.boo

|

|

| Menu | Choice | Purpose

| | |

| Folder | Open as > | Allows a salesperson to open a new window containing a different

| | | view of the customer list object. The Open as > choice leads to a
| | | cascaded menu that contains the names of the views available.

| | |

| | Print | Allows a salesperson to print a list of customers in the customer
| | | list

| | |

| Selected | Open as Personal | Opens a new window containing the personal information view of the
| | Information | selected customer. Because this is the only view available for the
| | | customer object, the choice does not appear in a cascaded menu.

| | |

| | Print | Allows the salesperson to print the general information for the

| | | selected customer

| | |

| | Send... | Allows the salesperson to send customer information to another user
| | |

| Edit | Undo | Undoes the salesperson's last action

| | |

| | Redo | Redoes the last action that the salesperson undid

| | |

| | Cut | Removes the selected object from the window and stores it on the

| | | clipboard

| | |

| | Copy | Stores a copy of the selected object on the clipboard

| | |

| | Create | Makes a new object from the selected object and stores the new

| | |

object on the clipboard

Page 1

Paste

Places a copy of the contents of the clipboard into the customer

list at a user-specified location

Clear Removes the selected object from the customer list without
compressing the space the object occupied

Find... Displays a window that contains controls that allow a salesperson to
search for specific information in the customer list

Select all Selects all of the information in the window

Deselect all

Deselects all of the information in the window

View Icons Displays the contents of the customer list as icons
Details Displays the contents of the customer list as rows and columns of
related information
Settings Displays the settings for the customer list
Sort Displays a window that allows a salesperson to specify the criteria
that determine the order in which the customers are displayed
Include... Displays a window that allows a salesperson to specify the criteria
that determine which customers are displayed
Refresh>
allow the salesperson to choose whether to continually update the
view of the customer list
Refresh now Causes the view of the customer list to be updated immediately to
reflect any changes in the customers since the last time the view
was refreshed
Windows Window list Displays a window containing a list of other windows that have been
opened from this customer list, from other objects associated with
this customer list, and from other windows associated with the car
dealership product
Help Help index Displays a window containing an index of all of the help information

available for the customer list

General help

Displays a window containing help information about the tasks a

salesperson can accomplish in the window for the customer list

Using help Displays a window containing an explanation of how to retrieve and
use help information
Tutorial Displays a window containing help information about how to use the

product

Product information

Displays a window containing information such as the product's

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Displays a cascaded menu containing the choices On and Off, which |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
version number and copyright notice.

|

29al1000.boo

Page 2

1.6.3.3.6 Menus for the Worksheet Object

Figure 104 illustrates the menus and choices for the Worksheet view of the

worksheet object.

The menu choices are described in the following table.

For an illustration of the complete window,

topic 1.6.4.1.

see_Figure 133 in

Figure 104. Menus for the Summary View of the Worksheet Object

Figure 105. Menus for the Worksheet Object

29al1000.boo

|

|

| Menu | Choice | Purpose

| | |

| Worksheet | Open as Worksheet | Allows a salesperson to open another window for the same worksheet
| | | object. The window opens to a worksheet view.

| | |

| | Open as Settings | Allows a salesperson to open another window for the same worksheet
| | | object. The window opens to a settings view.

| | |

| | Print | Allows the salesperson to print the worksheet information

| | |

| | Send... | Allows the salesperson to send worksheet information to another user
| | |

| Edit | Undo | Undoes the salesperson's last action

| | |

| | Redo | Redoes the last action that the salesperson undid

| | |

| | Cut | Removes the selected object from the window and stores it on the

| | | clipboard

| | |

| | Copy | Stores a copy of the selected object on the clipboard

| | |

| | Create | Makes a new object from the selected object and stores the new

| | | object on the clipboard

| | |

| | Paste | Places a copy of the contents of the clipboard into the worksheet
| | | object at a user-specified location

| | |

| | Clear | Removes the selected object from the worksheet object without

| | | compressing the space the object occupied

| | |

| | Find... | Displays a window that contains controls that allow a salesperson to
| | |

search for specific worksheet information

Page 1

Select all

Selects all of the information in the window

Deselect all

Deselects all of the information in the window

Worksheet

Displays the worksheet object opened to the worksheet section of the

notebook

Settings

Displays the settings for the worksheet object

Refresh>

Displays a cascaded menu containing the choices On and Off, which
allow the salesperson to choose whether to continually update the

view of the worksheet object

Refresh now

Causes the view of the worksheet object to be updated immediately to
reflect any changes in the worksheet since the last time the view

was refreshed

Window list

Displays a window containing a list of other windows that have been
opened from this worksheet object, from other objects associated
with this worksheet object, and from other windows associated with

the car dealership product

Help index

Displays a window containing an index of all of the help information

available for the worksheet object

General help

Displays a window containing help information about the tasks a

salesperson can accomplish in the window for the worksheet object

Using help Displays a window containing an explanation of how to retrieve and
use help information
Tutorial Displays a window containing help information about how to use the

product

Product information

Displays a window containing information such as the product's
version number and copyright notice.

29al1000.boo

Page 2

1.6.3.3.7 Menus for the Worksheet List Object

Figure 106 illustrates the menus and choices for the Icons view of the

worksheet list object. The menu bar choices are the same for the Details

and Settings views, so those views are not shown here. The menu choices

are described in the following table. For an illustration of the complete

window, see_Figure 132 in topic 1.6.4.1.

Figure 106. Menus for the Icons View of the Worksheet List Object

Figure 107. Menus for the Worksheet List Object

29al1000.boo

|

|

| Menu | Choice | Purpose

| | |

| Folder | Open as > | Allows a salesperson to open a new window containing a different
| | | view of the worksheet list. The Open as > choice leads to a

| | | cascaded menu that contains the names of the views available.

| | |

| | Print | Allows a salesperson to print a list of worksheets in the worksheet
| | | list

| | |

| Selected | Open as Worksheet | Allows a salesperson to open a window or windows for the selected
| | | worksheet object or objects.. The window or windows open to a

| | | worksheet view.

| | |

| | Open as Settings | Allows a salesperson to open a window or windows for the selected
| | | worksheet object or objects. The window or windows open to a

| | | settings view.

| | |

| | Print | Allows the salesperson to print the selected worksheet

| | |

| | Send... | Allows the salesperson to send a copy of a worksheet to another user
| | |

| Edit | Undo | Undoes the salesperson's last action

| | |

| | Redo | Redoes the last action that the salesperson undid

| | |

| | Cut | Removes the selected object from the window and stores it on the
| | | clipboard

| | |

| | Copy | Stores a copy of the selected object on the clipboard

Page 1

Create

Makes a new object from the selected object and stores the new

object on the clipboard

Paste Places a copy of the contents of the clipboard into the worksheet
list at a user-specified location

Clear Removes the selected object from the worksheet list without
compressing the space the object occupied

Find... Displays a window that contains controls that allow a salesperson to
search for specific information in the worksheet list

Select all Selects all of the information in the window

Deselect all

Deselects all of the information in the window

View Icons Displays the contents of the worksheet list as icons
Details Displays the contents of the worksheet list as rows and columns of
related information
Settings Displays the settings for the worksheet list
Sort Displays a window that allows a salesperson to specify the criteria
that determine the order in which the worksheets are displayed
Include... Displays a window that allows a salesperson to specify the criteria
that determine which worksheets are displayed
Refresh> Displays a cascaded menu containing the choices On and Off, which
allow the salesperson to choose whether to continually update the
view of the worksheet list
Refresh now Causes the view of the worksheet list to be updated immediately to
reflect any changes in the worksheets since the last time the view
was refreshed
Windows Window list Displays a window containing a list of other windows that have been
opened from this worksheet list, from other objects associated with
this worksheet list, and from other windows associated with the car
dealership product
Help Help index Displays a window containing an index of all of the help information

available for the worksheet list

General help

Displays a window containing help information about the tasks a
salesperson can accomplish in the window for the worksheet list

Using help Displays a window containing an explanation of how to retrieve and
use help information
Tutorial Displays a window containing help information about how to use the

product

Product information

Displays a window containing information such as the product's

version number and copyright notice.

29al1000.boo

Page 2

1.6.3.4 Step 4. Designing the Windows

We consulted Part 2, "CUA Reference" to design the actual contents of the

windows for our sample product.

The descriptions below do not contain all of the components possible in
windows of products with a CUA interface; our product did not need all of
them. Nor are the window designs definitive. A different group of
designers might have designed windows with different components.

We considered three principle aspects of each window:

- The window frame (includes the window border, window title, the scroll
bars, the system menu symbol, and the window sizing buttons)

The menus (includes the menu bar, the pull-down menus, and any
cascaded menus needed for choices in the pull-down menus)

The contents of the window (the view).

Because our product is an example only, we did not design all of the
windows for all of the objects. The designs described in the following
sections are representative only; they are not comprehensive.

.6.3.4.1 Window for the Car Object
.6.3.4.2 Windows for the Car Lot Object
1.6.3.4.3 Windows for the Customer Object
1.6.3.4.4 Windows for the Worksheet Object

29al000.boo Page 1

1.6.3.4.1 Window for the Car Object

We designed only one window for the car object, a window to display the
general information view. A salesperson displays the window by opening a
car object.

We used read-only fields to display the textual information, and we
combined the textual information with a drawing of the car. We could have
used some other kind of graphic representation, such as a video image or
computer animation.__Figure 8 shows the car object window.

take Hutton

Model ProSpart

‘fear 1991

Color AnizonaRed

YN 13305ECOO01
Price $17.000
Buyers 1
Specifications
Engine type 1.8 liter, DOHC, 4 cylinder, 16 valve
Horsepower (SAE net] 130 HP & 6000 RPM
Torque [SAE net) 121 FT-LBS [16.8 KG-M) (& 5000 RPM
Induction zystem Frogrammed fuel injection
Transmission 5- speed manual
Suspension 4-wheel independent double-wishbone, front/rear coil springs

Figure 108. Car Object. A general information view of a car object
displays textual and graphical information that both the

salesperson and the customer want to see.

f29al000.boo Page 1

1.6.3.4.2 Windows for the Car Lot Object

We designed several windows for the car lot object, including windows for
displaying the contents views (icons view and details view), windows from

routing choices, and a window for the composed view (the map view).

The Window for the Icons View: A salesperson displays this window by

opening the car lot object. The window contains icons representing car
objects. The car icon is a generic representation of a car. We
considered creating a separate icon for each car model, one that closely
resembled the model it represented, but we knew that many of the
distinguishing features would not be easy to see even on icons of a normal
size and would be indiscernible in views, such as the details view, that

display small icons.

Because salespeople are competitive, we knew that we should provide a way
to indicate when a car has a potential buyer. We designed a small graphic
of a human figure to augment the car icon when a salesperson has an
interested customer. When a car icon is augmented with the buyer figure,
a salesperson can decide to speed the close of a sale so that his or her
customer can make the purchase before another customer does, or the
salesperson can decide to steer a customer to a different car that is not
being considered by another customer. The car icon is augmented
automatically by the system when a salesperson transfers car information
to a worksheet or when a customer takes a car for a test drive.

Figure 109 shows the window for the icons view of the car lot object. The
icons of the Hutton Sapphire, the Hutton GT, and the Watson Faser are
augmented.

L
1997 Hutton GT 1931 Huttor ProS port

1997 W atzon Luna 1997 Watzon Fazer 1991 Watzon Luna

Figure 109. Window Displaying the Icons View of the Car Lot Object. Each
icon represents one car in the car lot. Three of the six

icons are augmented.

The Window for the Details View: This window can be displayed by opening
the car lot object to a details view or by selecting the Details choice

from the View menu.

In the details view we wanted to display the most frequently used
information about each car, so we arranged the year, make, model, price,
number of buyers, and vehicle identification number (VIN) in columns.
Then we placed a column heading over each column of data to identify the

f29al000.boo Page 1

items in that column. We designed the window so that the column headings
are in a different part of the window than the list of cars. This design
allows a salesperson to scroll the list of cars vertically without losing
sight of the headings. However, when the salesperson scrolls the list
horizontally, the headings scroll with the columns. Otherwise the
headings would be displayed over the wrong columns.

We designed the window to scroll in both directions. The horizontal
scrolling is helpful when the salesperson makes the window small enough
that not all of the columns are displayed. The vertical scrolling is
helpful when the salesperson makes the window small enough that not all of
the lines are displayed.

We included a status area at the top of the window to tell the salesperson
when the window had last been refreshed and whether the view had been
filtered._ Figure 110 shows the window for the details view of the car lot
object. Each line represents one car in the car lot.

530 matches: 530 in stock
Frice Buyers WIN

“Watson Patriot $22.000 MZISRREEIY
Huttan Sapphire L $14 400 QVZERET2IF

“Watson Fazer GT 419,000 230486167832
Watson MudTruck $22.000 4225AM2322
Watson MudTruck $16.900 9832RMI2373
“wheeler Pathvwinder $23.100 234BAGGTEI2
Hutton ProSport $17.000 13305ECO001
Auburn Sport GT $22.000 TEIZEXET1134

Figure 110. Window Displaying the Details View of the Car Lot Object.
Each line of information in the window represents one car in

the car lot.

The Window for the Filtering Feature: We named the filtering feature
Include... because it allows a salesperson to specify which cars are to
be included in the view of the car lot. The Include... choice is a
routing choice that appears in the pull-down menu from the View choice on
the menu bar of the icons and details views of the car lot object. The
Include Cars window appears when a salesperson selects the Include...
choice. It is a secondary window.

Our first design of the Include Cars window for appears in Figure 111.
Although we subsequently changed the design of the window, we have
included our original design here to illustrate how we used the iterative

design process to improve our product.

f29al000.boo Page 2

B i 55551

Llse With >> or Without >> to add afeature to the Desired

Figure 111. First Design of the Include Cars Window

To allow a salesperson to specify the filter criteria, we provided several
types of controls. For the Model, Make, and Color fields, we used
drop-down combination boxes. The drop-down characteristic saves space in
the window, the entry field portion of the control allows a salesperson to
type the appropriate information, and the list box portion of the control
allows a salesperson to select the desired information without having to
type it.

We used two spin buttons for the Price field, and we provided a ring of
values in $1,000 increments. The spin buttons allow the salesperson to
specify a minimum and maximum price for the cars to be displayed in the

contents views (icons and details).

To allow a salesperson to specify the features of the cars to be displayed
in the contents views, we used a pair of list boxes with three associated
push buttons. The list box on the left contains the features that are
available for a particular make, model, and year of car. The list box on
the right is where the salesperson creates a list of the features that the
customer does and does not want. To create the list in the list box on
the right, the salesperson selects a feature from the list box on the
left, then selects the With >> push button if the customer wants that
feature. The salesperson selects the Without >> push button if the
customer does not want that feature.

Features added to the list box on the right appear with a check mark if
they were added with the With push button.

When a salesperson wants to remove a feature from the list, the
salesperson selects the feature in the list box on the right, then selects
the Delete push button.

At the bottom of the window we placed some standard CUA-defined push
buttons: Include, Close, and Help. When a salesperson selects the Include
push button, the window containing the contents view of the car lot
displays all of the cars that match the criteria specified in the Include

Cars window, and the Include Cars window remains open.

The Close push button closes the Include Cars window without changing the

display in the Icons or Details window of the car lot.

A salesperson can select the Help push button to display contextual help
for the control or choice that the cursor is on.

To assist salespeople in learning to use our product, we provided an

information area at the bottom of the Include Cars window. When a
salesperson moves the cursor to a control, the information area displays

f29al000.boo Page 3

information about how to use that control. For example, when the cursor
is on the Available list box, the information area displays a message that

says something like this:

Select a feature from this list.
Then use With >> or Without >> to add the feature to the Desired list.

During a usability test, we discovered that the Available and Desired list
boxes and the With >> and Without >> push buttons didn't make sense to our
users. Consequently we redesigned the Include Cars window to make it
easier to understand and to reduce the number of decisions that
salespeople had to make. 1In particular, we added two fields that contain
the features customers ask for most often._ Figure 112 shows the
redesigned Include Cars window.

e

Make Optiorz
Fopular options
M odel ¥ & Air conditioning
- Automatic power brakes

Automatic power antenna

ear] " Cruize contral i
Security system
Stereo

Color i
Transmizsion

Mo preference
Automatic

Frice

Figure 112. New Version of the Include Cars Window

To alleviate the confusion that resulted when salespeople had to transfer
a feature from one control to another, we used check boxes and radio
buttons instead of the list boxes. The check boxes are appropriate for
most of the options because the salespeople can easily understand the
implications of checking an option or not--that is, a salesperson realizes
that checking the Air conditioning choice means that the customer wants
air conditioning, and not checking it means that the customer does not
want air conditioning. For the Transmission choices, however, check boxes
were not appropriate because a car must have some kind of transmission.
Therefore, we used radio buttons so that a salesperson has to select which
kind of transmission the car should have. To accommodate customers who
will accept either kind of transmission, we provided a No preference

choice.

The Window for the Sorting Feature: We named the sorting feature Sort...,
aptly enough. The Sort... choice is a routing choice that appears in the
pull-down menu from the View choice on the menu bar of the car lot object.
The Sort Cars window appears when a salesperson selects the Sort...

choice. It is a secondary window.

A salesperson can select the Sort... choice to specify the order in which
the cars should appear in the details view of the car lot object. We used
drop-down lists to display the names of the sorting categories so that a
salesperson would not have to remember the names of the appropriate
sorting values. The values correspond to the column headings shown in the
details view.

f29al000.boo Page 4

We designed two alternatives for the Sort Cars window. In the first
version, we used radio buttons and text as the mechanism for specifying
the sort order.__Figure 3 shows this version.

L

First Second

Orcler 1 Ascending Order 2 Oider3 % Ascending
Descending i ¢ Descending

Figure 113. Version 1 of the Sort Cars Window. In this version of the
window design, we used radio buttons as the mechanism for

specifying the sort order.

In the second version, we used value sets containing graphics that depict
the sort order.__Figure 114 shows this version.

The push buttons in both versions operate much like the push buttons in

the Include Cars window.

{bowialoconCae |

Colurn to Be Sorted Diirection
First

Second

Third

Figure 114. Version 2 of the Sort Cars Window. In this version of the
window design, we used value sets as the mechanism for

specifying the sort order.

It is not uncommon for designers to produce more than one proposed
solution to a design problem. Usability testing is the only way to

determine which design is superior.
When the salesperson selects the Sort push button the details view of the

car lot object is sorted as shown in Figure 115. The sort order is
indicated in the status area.

f29al000.boo Page 5

Madel Frice

Sport GT $22,000 TEIZEXETT34
Sapphire U< $14.400 BY23EXET237
PraSport $17.000 19905ECOO01

Mudiuck $16.900 9832RMJ 2373
Fazer GT $139.000 2IR4AGG T2
Mudtruck $22.000 I4TFRRM 2322
Patriot $22.000 34225RREE37
wheeler Pathiwindsr $29,000 23454667832

Figure 115. Sorted Details View of the Car Lot Object. The sort order is
indicated in the status area.

The Window for the Map View: The map view is a pictorial display of the
dealership's physical car lot. The view contains drawings of the showroom
and the parking places in the car lot. Car icons in the parking places

indicate where the corresponding cars are parked.

Car lot attendants are the primary users of this view of the car lot. As
the lot attendants move cars into and out of the lot, they update the
information displayed in this view. However, salespeople use the map view
to find out the location of cars that customers want to test drive.
Furthermore, a salesperson can drag a car icon to the showroom. By doing
so, the salesperson signals a lot attendant to bring the car to the
showroom so that a customer can take it for a test drive. When a sale is
closed, the salesperson drags the car icon to the service building so that

the service manager can schedule the pre-delivery prep work for the car.

Other dealership workers can also use the map view. Sales managers can
analyze sales patterns by using the map view. If the map view were tied
to the sales database, the sales managers might be able to learn, for
example, that cars parked in the first two rows of the lot sell more
quickly than cars parked at the back of the lot. The map view can also be

used to take a physical inventory of the cars in stock.

//

29al1000.boo Page 6

Figure 116. Window for the Map View of the Car Lot Object. The map view
represents the dealership's physical car lot.

29al000.boo Page 7

1.6.3.4.3 Windows for the Customer Object

A salesperson needs to be able to enter, view, and work with the customer
information, so we decided to display these groups of information in two
sections of a notebook control, one for general information and one for
financial information. The notebook control was the obvious choice
because the information can be grouped easily and because the design of
the notebook control can be helpful in controlling access to certain
information. For example, if we wanted to restrict access to a customer's
financial information, we could include security measures that allow only
the salesperson and the finance manager to have access to that section of
the notebook.__Figure 117 shows the first page of the general information
section of the customer object.

Telephone
Home

Page 1 of 4
Financial

PICTURE 105

Figure 117. Window for the Customer Object. A notebook control with
divider tabs displays information about a customer. The
divider tabs, labeled General and Financial, indicate the

major groups of information.

The general information section of the notebook has four pages. On the
first page we provided entry fields for most of the information because
entering the information is the only way to acquire the information. For
the Name, City, Zip, Home, and Work fields, we used single-line entry
fields. For the Street field we used a multiple-line entry field. We
made the entry fields large enough to display a typical customer's

information, so we did not provide scroll bars.

We provided a drop-down combination box for the State field. The
drop-down combination box allows a salesperson either to type in the
two-letter abbreviation for the state or to scroll through and select from
a list of all of the abbreviations.

Because most of a car dealership's customers live in the vicinity of the
dealership, we pre-filled some of the entry fields with the values most
likely to appear in them. For example, because our dealership is in North
Carolina, we pre-filled the State field with NC, and we pre-filled the
Home and Work fields with the area code for the area where the dealership

is located. Of course the salesperson can changes these values.

Each field has a field prompt, and some fields are grouped with a group
heading. For example, the Street, City, State, and Zip fields are grouped
under the Address group heading, and the Home and Work fields are grouped
under the Telephone group heading.

f29al000.boo Page 1

A salesperson can move the cursor from one entry field to the next by
pressing the Tab key or by moving the pointer and clicking the mouse
button.

The second page of the general information section of the notebook looks
like this:

Identification number

Date of birth | it B mmSdd Ay

Age

Ermployer

Figure 118. Customer Window, Page 2

Our product automatically calculates the value for the Age field, which is
a read-only field, by reading the values the salesperson enters into the
Date of birth field. Descriptive text appears to the right of the Date of
birth field to let the salesperson know the correct format for the date of
birth information.

Some of the customer information has inherent characteristics that we
could use to help verify whether the salesperson has entered appropriate
values. For example, state information must be two alphabetic characters,
and the identification number must be nine numeric characters. When a
salesperson enters a value for one of these pieces of information, our
product checks the entered information to ensure that it has the correct

characteristics. If it does not, the product alerts the salesperson.

We considered two methods for alerting a salesperson. First we considered
changing the background color or contrast of the entry field as soon as
the salesperson enters an inappropriate value. Then we considered
displaying a message window that describes the problem and provides
controls that allow the salesperson to correct the problem from within the
message window. For example, if a salesperson enters fewer than nine
digits for the identification number or enters alphabetic characters

instead of numbers, our product would display a message like this:

f29al000.boo Page 2

i
L O'Toole Sean-ldentification Numoer |

The identification number does not have
enough numbers.

|dentification number

PICTURE 107

Figure 119. Message Window

We decided the first method might be too subtle for our intended users, so

we settled on the message window.

The third and fourth pages of the general information section contain
settings choices that pertain to the customer object itself rather than to
the customer that the object represents. The pages are similar to the

page shown in Eigur 4 in topic 1.4.5.1.3. We placed these pages behind

the other pages in the section because a salesperson will use the customer
object information less often than the customer information found on the

first two pages.

f29al000.boo Page 3

1.6.3.4.4 Windows for the Worksheet Object

The worksheet object is the most important because it is where all of the
elements of the sale come together: the customer, the car, and the money.
However, if we had tried to display all of the information about the car,
customer, and money at once, a salesperson would have had difficulty
reading and working with the information. We used a notebook control to
organize the information into sections that are meaningful to a
salesperson and that reflect the tasks the salesperson wants to
accomplish. A salesperson can get to any section of the notebook by
selecting the tab for that section.

Figure 120 shows the worksheet window. The page displayed is the actual
worksheet that the salesperson uses when negotiating the sale. Several of
the entry fields are filled in automatically when the salesperson
transfers the customer and car information to the worksheet. For example,
the Vehicle, VIN, and Retail fields are filled according to information
from the car object. The values for some of the other fields are based on
defaults suggested by the dealership. For example, the License fee field
automatically displays the standard licensing fee for the state in which
the dealership is located. 1If a customer plans to license the vehicle in
a different state, the salesperson can type a different value into the
field or can change the amount to $0. The Net price and Balance fields
are read-only fields. The values they contain are calculated according to

the values contained in other fields.

) 0'Toole, Sean 1991 Huttan PraSport ‘worksheet 1005
Fietail $ 17500

Rebate
Salesperson i Trade-ir

Customer

Yekicle Allowance

License fee

YIN

Het price $ 12250
Down payment

Amount to finance

Balance

Financing

Figure 120. Worksheet Window

f29al000.boo Page 1

1.6.4 Using the P